Skip to main content
Log in

Microbial Monitoring of the Recovery of Soil Quality During Heavy Metal Phytoremediation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Soil pollution with heavy metals is a worldwide environmental problem. Phytoremediation through phytoextraction and phytostabilization appears to be a promising technology for the remediation of polluted soils. It is important to strongly emphasize that the ultimate goal of a heavy metal remediation process must be not only to remove the heavy metals from the soil (or instead to reduce their bioavailability and mobility) but also to restore soil quality. Soil quality is defined as the capacity of a given soil to perform its functions. Soil microbial properties are increasingly being used as biological indicators of soil quality due to their quick response, high sensitivity, and, above all, capacity to provide information that integrates many environmental factors. Indeed, microbial properties are among the most ecologically relevant indicators of soil quality. Consequently, microbial monitoring of the recovery of soil quality is often carried out during heavy metal phytoremediation processes. However, soil microbial properties are highly context dependent and difficult to interpret. For a better interpretation of microbial properties as indicators of soil quality, they may be grouped within categories of higher ecological relevance, such as soil functions, ecosystem health attributes, and ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability and risk of metals. New York: Springer.

    Google Scholar 

  • Alkorta, I., Becerril, J. M., & Garbisu, C. (2010). Phytostabilization of metal contaminated soils. Reviews on Environmental Health, 25, 135–146.

    CAS  Google Scholar 

  • Alvarenga, P., Palma, P., Gonçalves, A. P., Baiao, N., Fernandes, R. M., de Varennes, A., Vallini, G., Duarte, E., & Cunha-Queda, A. C. (2008). Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin. Chemosphere, 72, 1774–1781.

    CAS  Google Scholar 

  • Alvarenga, P., Palma, P., Gonçalves, A. P., Fernandes, R. M., de Varennes, A., Vallini, G., Duarte, E., & Cunha-Queda, A. C. (2009). Organic residues as immobilizing agents in aided phytostabilization: (II) effects on soil biochemical and ecotoxicological characteristics. Chemosphere, 74, 1301–1308.

    CAS  Google Scholar 

  • Apitz, S. E. (2008). Managing ecosystems: the importance of integration. Integrated Environmental Assessment and Management, 4, 273.

    Google Scholar 

  • Baker, L. R., White, P. M., & Pierzynski, G. M. (2011). Changes in microbial properties after manure, lime, and bentonite application to a heavy metal-contaminated mine waste. Applied Soil Ecology, 48, 1–10.

    Google Scholar 

  • Barajas Aceves, M., Grace, C., Ansorena, J., Dendooven, L., & Brookes, P. C. (1999). Soil microbial biomass and organic C in a gradient of zinc concentrations in soils around a mine spoil tip. Soil Biology and Biochemistry, 31, 867–876.

    Google Scholar 

  • Belyaeva, O. N., Haynes, R. J., & Birukova, O. A. (2005). Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper. Biology and Fertility of Soils, 41, 85–94.

    CAS  Google Scholar 

  • Bloem, J., Hopkins, D., & Benedetti, A. (2006). Microbiological methods for assessing soil quality. Wallingford: CABI Publishing.

    Google Scholar 

  • Blum, W., & Aguilar-Santelises, A. (1994). A concept of sustainability and resilience based on soil functions: the role of ISSS in promoting sustainable land use. In D. Greenland & I. Szabolcs (Eds.), Soil resilience and sustainable land use (pp. 535–542). Wallingford: CAB International.

    Google Scholar 

  • Boularbah, A., Schwartz, C., Bitton, G., Aboudrar, W., Ouhammou, A., & Morel, J. L. (2006). Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere, 63, 811–817.

    CAS  Google Scholar 

  • Brandt, K. K., Frandsen, R. J. N., Holm, P. E., & Nybroe, O. (2010). Development of pollution-induced community tolerance is linked to structural and functional resilience of a soil bacterial community following a five-year field exposure to copper. Soil Biology and Biochemistry, 42, 748–757.

    CAS  Google Scholar 

  • Breure, A.M., Mulder, C., Rutgers, M., Schouten, T., de Zwart, D., & Bloem, J. (2004). A biological indicator for soil quality. In Proceedings from an OECD Expert Meeting Rome, Italy, March 2003: Agricultural impacts on soil erosion and soil biodiversity: developing indicators for policy analysis (pp. 485-494).

  • Brookes, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19, 269–279.

    CAS  Google Scholar 

  • Brown, S., Sprenger, M., Maxemchuk, A., & Compton, H. (2005). Ecosystem function in alluvial tailings after biosolids and lime addition. Journal of Environmental Quality, 34, 139–148.

    CAS  Google Scholar 

  • Castaldi, P., Melis, P., Silvetti, M., Deiana, P., & Garau, G. (2009). Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil. Geoderma, 151, 241–248.

    CAS  Google Scholar 

  • Chen, Y. H., Li, X. D., & Shen, Z. G. (2004). Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere, 57, 187–196.

    CAS  Google Scholar 

  • Chen, Y., Wang, Y., Wu, W., Lin, Q., & Xue, S. (2006). Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Science of the Total Environment, 356, 247–255.

    CAS  Google Scholar 

  • Costanza, R. (1992). Toward an operational definition of ecosystem health. In R. Costanza, B. Norton, & B. Haskell (Eds.), Ecosystem health: new goals for environmental management (pp. 239–256). Washington: Island Press.

    Google Scholar 

  • Doran, J. W., & Parkin, T. (1994). Defining and assessing soil quality. In J. W. Doran, D. Coleman, D. Bezdicek, & B. Stewart (Eds.), Defining soil quality for a sustainable environment (pp. 3–21). Madison: Soil Science Society of America.

    Google Scholar 

  • Doran, J. W., & Parkin, T. (1996). Quantitative indicators of soil quality: a minimum data set. In J. W. Doran & A. Jones (Eds.), Methods for assessing soil quality (pp. 25–37). Madison: Soil Science Society of America.

    Google Scholar 

  • Doran, J. W., & Zeiss, M. R. (2000). Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15, 3–11.

    Google Scholar 

  • Elrashidi, M. A., Hammer, D., Fares, A., Seybold, C. A., Ferguson, R., & Peaslee, S. D. (2007). Loss of heavy metals by runoff from agricultural watersheds. Soil Science, 172, 876–894.

    CAS  Google Scholar 

  • Epelde, L., Becerril, J. M., Hernández-Allica, J., Barrutia, O., & Garbisu, C. (2008). Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Applied Soil Ecology, 39, 299–310.

    Google Scholar 

  • Epelde, L., Hernández-Allica, J., Becerril, J. M., Blanco, F., & Garbisu, C. (2008). Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Science of the Total Environment, 401, 21–28.

    CAS  Google Scholar 

  • Epelde, L., Becerril, J. M., Mijangos, I., & Garbisu, C. (2009). Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health. Journal of Environmental Quality, 38, 2041–2049.

    CAS  Google Scholar 

  • Epelde, L., Mijangos, I., Becerril, J. M., & Garbisu, C. (2009). Soil microbial community as bioindicator of the recovery of soil functioning derived from metal phytoextraction with sorghum. Soil Biology and Biochemistry, 41, 1788–1794.

    CAS  Google Scholar 

  • Epelde, L., Becerril, J. M., Kowalchuk, G. A., Deng, Y., Zhou, J. Z., & Garbisu, C. (2010). Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities. Applied and Environmental Microbiology, 76, 7843–7853.

    CAS  Google Scholar 

  • Epelde, L., Becerril, J. M., Barrutia, O., González-Oreja, J. A., & Garbisu, C. (2010). Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environmental Pollution, 158, 1576–1583.

    CAS  Google Scholar 

  • Faber, J.H., & van Wensem, J. (2011). Elaborations on the use of the ecosystem services concept for application in ecological risk assessment for soils. Science of The Total Environment, in press, available online 1 July 2011.

  • Gans, J., Wolinsky, M., & Dunbar, J. (2005). Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 309, 1387–1390.

    CAS  Google Scholar 

  • Garbisu, C., & Alkorta, I. (1999). Utilization of genetically engineered microorganisms (GEMs) for bioremediation. Journal of Chemical Technology and Biotechnology, 74, 599–606.

    CAS  Google Scholar 

  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77, 229–236.

    CAS  Google Scholar 

  • Garbisu, C., Alkorta, I., & Epelde, L. (2011). Assessment of soil quality using microbial properties and attributes of ecological relevance. Applied Soil Ecology, 49, 1–4.

    Google Scholar 

  • Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 30, 1389–1414.

    CAS  Google Scholar 

  • Gil-Sotres, F., Trasar-Cepeda, C., Leirós, M. C., & Seoane, S. (2005). Different approaches to evaluating soil quality using biochemical properties. Soil Biology and Biochemistry, 37, 877–887.

    CAS  Google Scholar 

  • Girvan, M. S., Campbell, C. D., Killham, K., Prosser, J. I., & Glover, L. A. (2005). Bacterial diversity promotes community stability and functional resilience after perturbation. Environmental Microbiology, 7, 301–313.

    CAS  Google Scholar 

  • Grčman, H., Velikonja-Bolta, Š., Vodnik, D., Kos, B., & Leštan, D. (2001). EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant and Soil, 235, 105–114.

    Google Scholar 

  • Grčman, H., Vodnik, D., Velikonja-Bolta, Š., & Leštan, D. (2003). Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced: lead phytoextraction. Journal of Environmental Quality, 32, 500–506.

    Google Scholar 

  • Gregorich, E. G., Carter, M. R., Angers, D. A., Monreal, C. M., & Ellert, B. H. (1994). Towards a minimum data set to assess soil organic matter quality in agricultural soils. Canadian Journal of Soil Science, 74, 367–385.

    CAS  Google Scholar 

  • He, Z. L. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19, 125–140.

    CAS  Google Scholar 

  • Hernández-Allica, J., Garbisu, C., Becerril, J. M., Barrutia, O., García-Plazaola, J. I., Zhao, F. J., & McGrath, S. P. (2006). Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens. Plant, Cell & Environment, 29, 1422–1429.

    Google Scholar 

  • Hernández-Allica, J., Becerril, J. M., Zarate, O., & Garbisu, C. (2006). Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant and Soil, 281, 147–158.

    Google Scholar 

  • Hernández-Allica, J., Garbisu, C., Barrutia, O., & Becerril, J. M. (2007). EDTA-induced heavy metal accumulation and phytotoxicity in cardoon plants. Environmental and Experimental Botany, 60, 26–32.

    Google Scholar 

  • Hernández-Allica, J., Becerril, J. M., & Garbisu, C. (2008). Assessment of the phytoextraction potential of high biomass crop plants. Environmental Pollution, 152, 32–40.

    Google Scholar 

  • Hinojosa, M. B., García-Ruiz, R., Vinegla, B., & Carreira, J. A. (2004). Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcóllar toxic spill. Soil Biology and Biochemistry, 36, 1637–1644.

    CAS  Google Scholar 

  • Hinojosa, M. B., Carreira, J. A., Rodríguez-Maroto, J. M., & García-Ruiz, R. (2008). Effects of pyrite sludge pollution on soil enzyme activities: ecological dose–response model. Science of the Total Environment, 396, 89–99.

    CAS  Google Scholar 

  • Hinojosa, M. B., Carreira, J. A., García-Ruiz, R., Rodríguez-Maroto, J. M., Daniell, T. J., & Griffiths, B. S. (2010). Plant treatment, pollutant load, and soil type effects in rhizosphere ecology of trace element polluted soils. Ecotoxicology and Environmental Safety, 73, 970–981.

    Google Scholar 

  • Janvier, C., Villeneuve, F., Alabouvette, C., Edel-Hermann, V., Mateille, T., & Steinberg, C. (2007). Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biology and Biochemistry, 39, 21–23.

    Google Scholar 

  • Jeffery, S., Gardi, C., Jones, A., Montanarella, L., Marmo, L., Miko, L., Ritz, K., Peres, G., Rombke, J., & van der Putten, W. (2010). European Atlas of Soil Biodiversity. Luxembourg: Publications Office of the European Union.

    Google Scholar 

  • Jiang, J., Wu, L., Li, N., Luo, Y., Liu, L., Zhao, Q., Zhang, L., & Christie, P. (2010). Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. European Journal of Soil Biology, 46, 18–26.

    CAS  Google Scholar 

  • Kamnev, A. A., & van der Lelie, D. (2000). Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Bioscience Reports, 20, 239–258.

    CAS  Google Scholar 

  • Karlen, D. L., Andrews, S. S., & Doran, J. W. (2001). Soil quality: current concepts and applications. In D. Sparks (Ed.), Advances in agronomy (pp. 1–40). New York: Academic Press.

    Google Scholar 

  • Karlen, D. L., Ditzler, C. A., & Andrews, S. S. (2003). Soil quality: why and how? Geoderma, 114, 145–156.

    CAS  Google Scholar 

  • Kavamura, V. N., & Espósito, E. (2010). Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnology Advances, 28, 61–69.

    CAS  Google Scholar 

  • Kennedy, A. C., & Papendick, R. I. (1995). Microbial characteristics of soil quality. Journal of Soil and Water Conservation, 50, 243–248.

    Google Scholar 

  • Knox, A., Seaman, J., Adriano, D. C., & Pierzynski, G. (2000). Chemophytostabilization of metals in contaminated soils. In D. Wise, D. Trantolo, E. Cichon, H. Inyang, & U. Stottmeister (Eds.), Bioremediation of contaminated soils (pp. 811–836). New York: Marcel Dekker.

    Google Scholar 

  • Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., & Maurice, C. (2006). Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environmental Pollution, 144, 62–69.

    CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2007). Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat. Environmental Pollution, 145, 365–373.

    CAS  Google Scholar 

  • Kumpiene, J., Guerri, G., Landi, L., Pietramellara, G., Nannipieri, P., & Renella, G. (2009). Microbial biomass, respiration and enzyme activities after in situ aided phytostabilization of a Pb- and Cu-contaminated soil. Ecotoxicology and Environmental Safety, 72, 115–119.

    CAS  Google Scholar 

  • Lackey, R. T. (2001). Values, policy, and ecosystem health. Bioscience, 51, 437–443.

    Google Scholar 

  • Lee, S. H., Park, H., Koo, N., Hyun, S., & Hwang, A. (2011). Evaluation of the effectiveness of various amendments on trace metals stabilization by chemical and biological methods. Journal of Hazardous Materials, 188, 44–51.

    CAS  Google Scholar 

  • Leitgib, L., Kalman, J., & Gruiz, K. (2007). Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere, 66, 428–434.

    CAS  Google Scholar 

  • Lombi, E., Zhao, F. J., Zhang, G. Y., Sun, B., Fitz, W., Zhang, H., & McGrath, S. P. (2002). In situ fixation of metals in soils using bauxite residue: chemical assessment. Environmental Pollution, 118, 435–443.

    CAS  Google Scholar 

  • Lovley, D. R. (1993). Dissimilatory metal reduction. Annual Review of Microbiology, 47, 263–290.

    CAS  Google Scholar 

  • Luo, C. L., Shen, Z. G., & Li, X. D. (2005). Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59, 1–11.

    CAS  Google Scholar 

  • McGrath, S. P., Zhao, F. J., & Lombi, E. (2002). Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy, 75, 1–56.

    CAS  Google Scholar 

  • Mench, M., Bussière, S., Boisson, J., Castaing, E., Vangronsveld, J., Ruttens, A., de Koe, T., Bleeker, P., Assunção, A., & Manceau, A. (2003). Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant and Soil, 249, 187–202.

    CAS  Google Scholar 

  • Mench, M., Renella, G., Gelsomino, A., Landi, L., & Nannipieri, P. (2006). Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments. Environmental Pollution, 144, 24–31.

    CAS  Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environmental Health Perspectives, 116, 278–283.

    CAS  Google Scholar 

  • Menzies, N. W., Donn, M. J., & Kopittke, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145, 121–130.

    CAS  Google Scholar 

  • Mijangos, I., Pérez, R., Albizu, I., & Garbisu, C. (2006). Effects of fertilization and tillage on soil biological parameters. Enzyme and Microbial Technology, 40, 100–106.

    CAS  Google Scholar 

  • Mijangos, I., Albizu, I., Epelde, L., Amezaga, I., Mendarte, S., & Garbisu, C. (2010). Effects of liming on soil properties and plant performance of temperate mountainous grasslands. Journal of Environmental Management, 91, 2066–2074.

    Google Scholar 

  • Mühlbachová, G. (2011). Soil microbial activities and heavy metal mobility in long-term contaminated soils after addition of EDTA and EDDS. Ecological Engineering, 37, 1064–1071.

    Google Scholar 

  • Nannipieri, P., & Badalucco, L. (2003). Biological processes. In D. Benbi & R. Nieder (Eds.), Handbook of processes and modelling in the soil–plant system (pp. 57–82). Binghamtom: Haworth Press.

    Google Scholar 

  • Peijnenburg, W., & Jager, T. (2003). Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicology and Environmental Safety, 56, 63–77.

    CAS  Google Scholar 

  • Pennanen, T., Frostegård, Å., Fritze, H., & Bååth, E. (1996). Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Applied and Environmental Microbiology, 62, 420–428.

    CAS  Google Scholar 

  • Pepper, I. L., Gerba, C. P., Newby, D. T., & Rice, C. W. (2009). Soil: a public health threat or savior? Critical Reviews in Environmental Science and Technology, 39, 416–432.

    Google Scholar 

  • Pérez-de-Mora, A., Burgos, P., Madejón, E., Cabrera, F., Jaeckel, P., & Schloter, M. (2006). Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biology and Biochemistry, 38, 327–341.

    Google Scholar 

  • Postma, J., Schilder, M. T., Bloem, J., & van Leeuwen-Haagsma, W. K. (2008). Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biology and Biochemistry, 40, 2394–2406.

    CAS  Google Scholar 

  • Rapport, D. J. (1998). Defining ecosystem health. In D. J. Rapport, R. Costanza, D. Epstein, C. Gaudet, & R. Levins (Eds.), Ecosystem health (pp. 18–33). Oxford: Blackwell Science.

    Google Scholar 

  • Rapport, D. J., Costanza, R., Epstein, D., Gaudet, C., & Levins, R. (1998). Ecosystem health. Oxford: Blackwell Science.

    Google Scholar 

  • Rapport, D. J., Costanza, R., & McMichael, A. J. (1998). Assessing ecosystem health. Trends in Ecology & Evolution, 13, 397–402.

    CAS  Google Scholar 

  • Renella, G., Landi, L., Ascher, J., Ceccherini, M. T., Pietramellara, G., Mench, M., & Nannipieri, P. (2008). Long-term effects of aided phytostabilisation of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils. Environmental Pollution, 152, 702–712.

    CAS  Google Scholar 

  • Ritz, K., Black, H. I. J., Campbell, C. D., Harris, J. A., & Wood, C. (2009). Selecting biological indicators for monitoring soils: a framework for balancing scientific and technical opinion to assist policy development. Ecological Indicators, 9, 1212–1221.

    CAS  Google Scholar 

  • Ruttens, A., Mench, M., Colpaert, J. V., Boisson, J., Carleer, R., & Vangronsveld, J. (2006). Phytostabilization of a metal contaminated sandy soil. I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environmental Pollution, 144, 524–532.

    CAS  Google Scholar 

  • Saifullah, Meers, E., Qadir, M., de Caritat, P., Tack, F. M. G., Du Laing, G., & Zia, M. H. (2009). EDTA-assisted Pb phytoextraction. Chemosphere, 74, 1279–1291.

    CAS  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.

    CAS  Google Scholar 

  • Sandermann, H. (1994). Higher-plant metabolism of xenobiotics—the green liver concept. Pharmacogenetics, 4, 225–241.

    CAS  Google Scholar 

  • Schloter, M., Dilly, O., & Munch, J. C. (2003). Indicators for evaluating soil quality. Agriculture, Ecosystems & Environment, 98, 255–262.

    Google Scholar 

  • Schwab, A. P., He, Y. H., & Banks, M. K. (2005). The influence of organic ligands on the retention of lead in soil. Chemosphere, 61, 856–866.

    CAS  Google Scholar 

  • Schwab, A. P., Zhu, D. S., & Banks, M. K. (2008). Influence of organic acids on the transport of heavy metals in soil. Chemosphere, 72, 986–994.

    CAS  Google Scholar 

  • Sojka, R. E., & Upchurch, D. R. (1999). Reservations regarding the soil quality concept. Soil Science Society of America Journal, 63, 1039–1054.

    CAS  Google Scholar 

  • Sojka, R. E., Upchurch, D. R., & Borlaug, N. E. (2003). Quality soil management or soil quality management: performance versus semantics. In D. Sparks (Ed.), Advances in agronomy (pp. 1–68). New York: Academic Press.

    Google Scholar 

  • Tejada, M., Hernández, M. T., & García, C. (2006). Application of two organic amendments on soil restoration: effects on the soil biological properties. Journal of Environmental Quality, 35, 1010–1017.

    CAS  Google Scholar 

  • Thomsen, M., Faber, J. H., & Sorensen, P. B. (2012). Soil ecosystem health and services—evaluation of ecological indicators susceptible to chemical stressors. Ecological Indicators, 16, 67–75.

    CAS  Google Scholar 

  • Trapp, S., & Karlson, U. (2001). Aspects of phytoremediation of organic pollutants. Journal of Soils and Sediments, 1, 37–43.

    CAS  Google Scholar 

  • Turbé, A., de Toni, A., Benito, P., Lavelle, P., Lavelle, P., Ruiz, N., van der Putten, W. H., Labouze, E., & Mudgal, S. (2010). Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, IRD, and NIOO, Report for European Commission (DG Environment).

    Google Scholar 

  • Ultra, V. U., Yano, A., Iwasaki, K., Tanaka, S., Kang, Y. M., & Sakurai, K. (2005). Influence of chelating agent addition on copper distribution and microbial activity in soil and copper uptake by brown mustard (Brassica juncea). Soil Science & Plant Nutrition, 51, 193–202.

    CAS  Google Scholar 

  • van Bruggen, A. H. C., & Semenov, A. M. (2000). In search of biological indicators for soil health and disease suppression. Applied Soil Ecology, 15, 13–24.

    Google Scholar 

  • Velasquez, E., Lavelle, P., & Andrade, M. (2007). GISQ, a multifunctional indicator of soil quality. Soil Biology and Biochemistry, 39, 3066–3080.

    CAS  Google Scholar 

  • Wang, A. S., Angle, J. S., Chaney, R. L., Delorme, T. A., & McIntosh, M. (2006). Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biology and Biochemistry, 38, 1451–1461.

    CAS  Google Scholar 

  • Wenzel, W. W., Salt, D., Smith, R., & Adriano, D. C. (1999). Phytoremediation: a plant microbe based remediation system. In D. C. Adriano, J. M. Bollag, W. T. Frankenberger Jr., & R. C. Sims (Eds.), Bioremediation of contaminated soils (pp. 456–508). Madison: Soil Science Society of America.

    Google Scholar 

  • Winding, A., Hund-Rinke, K., & Rutgers, M. (2005). The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety, 62, 230–248.

    CAS  Google Scholar 

  • Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50, 775–780.

    CAS  Google Scholar 

  • Yang, R. Y., Tang, J. J., Chen, X., & Hu, S. J. (2007). Effects of coexisting plant species on soil microbes and soil enzymes in metal lead contaminated soils. Applied Soil Ecology, 37, 240–246.

    Google Scholar 

  • Yoon, J., Cao, X. D., Zhou, Q. X., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368, 456–464.

    CAS  Google Scholar 

  • Zhang, C. B., Huang, L. N., Luan, T. G., Jin, J., & Lan, C. Y. (2006). Structure and function of microbial communities during the early stages of revegetation of barren soils in the vicinity of a Pb/Zn smelter. Geoderma, 136, 555–565.

    CAS  Google Scholar 

  • Zhang, F.-P., Li, C.-F., Tong, L.-G., Yue, L.-X., Li, P., Ciren, Y.-J., & Cao, C.-G. (2010). Response of microbial characteristics to heavy metal pollution of mining soils in central Tibet, China. Applied Soil Ecology, 45, 144–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Garbisu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Sagasti, M.T., Alkorta, I., Becerril, J.M. et al. Microbial Monitoring of the Recovery of Soil Quality During Heavy Metal Phytoremediation. Water Air Soil Pollut 223, 3249–3262 (2012). https://doi.org/10.1007/s11270-012-1106-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1106-8

Keywords

Navigation