Skip to main content

Advertisement

Log in

Prediction of the Level of Air Pollution Using Principal Component Analysis and Artificial Neural Network Techniques: a Case Study in Malaysia

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study focused on the pattern recognition of Malaysian air quality based on the data obtained from the Malaysian Department of Environment (DOE). Eight air quality parameters in ten monitoring stations in Malaysia for 7 years (2005–2011) were gathered. Principal component analysis (PCA) in the environmetric approach was used to identify the sources of pollution in the study locations. The combination of PCA and artificial neural networks (ANN) was developed to determine its predictive ability for the air pollutant index (API). The PCA has identified that CH4, NmHC, THC, O3, and PM10 are the most significant parameters. The PCA-ANN showed better predictive ability in the determination of API with fewer variables, with R 2 and root mean square error (RMSE) values of 0.618 and 10.017, respectively. The work has demonstrated the importance of historical data in sampling plan strategies to achieve desired research objectives, as well as to highlight the possibility of determining the optimum number of sampling parameters, which in turn will reduce costs and time of sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdul-Wahab, S. A., & Al-Alawi, S. M. (2002). Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environmental Modelling and Software, 17, 219–228.

    Article  Google Scholar 

  • Abdul-Wahab, S. A., Bakheit, C. S., & Al-Alawi, S. M. (2005). Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling and Software, 20, 1263–1271.

    Article  Google Scholar 

  • Afroz, R., Hassan, M. N., & Ibrahim, N. A. (2003). Review of air pollution and health impacts in Malaysia. Environmental Research, 92, 71–77. doi:10.1016/S0013-9351(02)00059-2.

    Article  CAS  Google Scholar 

  • Afzali, M., Afzali, A., & Zahedi, G. (2012). The potential of artificial neural network technique in daily and monthly ambient air temperature prediction. International Journal of Environmental Science Development, 3(1), 33–38.

    Google Scholar 

  • Alam Sekitar Malaysia Sdn Bhd (ASMA). (2007). Standard operating procedure for continuous air quality monitoring. Selangor Malaysia: Shah Alam.

    Google Scholar 

  • Alkasassbeh, M., Sheta, A. F., Faris, H., & Turabieh, H. (2013). Prediction of PM10 and TSP air pollution parameters using artificial neural network autoregressive, external input models: a case study in salt, Jordan. Middle East Journal of Scientific Research, 14(7), 999–1009. doi:10.5829/idosi.mejsr.2013.14.7.2171.

    Google Scholar 

  • Arsene, C., Olariu, R. I., & Mihalopoulos, N. (2007). Chemical composition of rainwater in the Northeastern Romania, Iasi Region (2003–2006). Atmospheric Environment, 41, 9452–9467.

    Article  CAS  Google Scholar 

  • Awang, M. B., Jaafar, A. B., Abdullah, A. M., Ismail, M. B., Hassan, M. N., Abdullah, R., Johan, S., & Noor, H. (2000). Air quality in Malaysia: impacts, management issue and future challenges. Respirology, 5, 183–196.

    Article  CAS  Google Scholar 

  • Azid, A., Juahir, H., Latif, M. T., Zain, S. M., & Osman, M. R. (2013). Feed-forward artificial neural network model for air pollutant index prediction in the southern region of Peninsular Malaysia. Journal of Environmental Protection, 4(12A), 1–10. doi:10.4236/jep.2013.412A001.

    Article  Google Scholar 

  • Azmi, S. Z., Latif, M. T., Ismail, A. S., Juneng, L., & Jemain, A. A. (2010). Trend and status of air quality at three different monitoring stations in the Klang Valley, Malaysia. Air Quality, Atmosphere and Health, 3, 53–64. doi:10.1007/s11869-009-0051-1.

    Article  CAS  Google Scholar 

  • Banan, N., Latif, M. T., Juneng, L., & Ahamad, F. (2013). Characteristics of surface ozone concentrations at stations with different backgrounds in the Malaysian Peninsula. Aerosol and Air Quality Research, 13, 1090–1106. doi:10.4209/aaqr.2012.09.0259.

    CAS  Google Scholar 

  • Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Psychology, 3, 77–85.

    Google Scholar 

  • Bishoi, B., Prakash, A., & Jain, V. K. (2009). A comparative study of air quality index based on factor analysis and US EPA methods for an urban environment. Aerosol & Air Quality Research, 9, 1–17.

    CAS  Google Scholar 

  • Brauer, M., & Jamal, H. H. (1998). Fires in Indonesia: crisis and reaction. Environmental Science and Technology, 32(17), 404A–407A.

    Article  CAS  Google Scholar 

  • Brunelli, U., Piazza, U., & Pignato, L. (2007). Two-day ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy. Atmospheric Environment, 41(14), 2967–2995. doi:10.1016/j.atmosenv.2006.12.013.

    Article  CAS  Google Scholar 

  • Bucinski, A., Baczek, T., Wasniewski, T., & Stefanowicz, M. (2005). Clinical data analysis with the use of artificial neural networks (ANN) and principal component analysis (PCA) of patients with endometrial carcinoma. Reports on Practical Oncology & Radiotherapy, 10, 239–248.

    Google Scholar 

  • Chaloulakou, A., Grivas, G., & Spyrellis, N. (2003). Neural network and multiple regression model for PM10 prediction in Athens: a comparative assessment. Journal Air & Waste Management Association, 53, 1183–1190. doi:10.1080/10473289.2003.10466276.

    Article  Google Scholar 

  • Cigizoglu, H. K., & Kisi, O. (2006). Methods to improve the neural network performance in suspended sediment estimation. Journal of Hydrology, 317(3), 221–238.

    Article  Google Scholar 

  • Department of Environment (DOE) (2014). Main sources of air pollution in Malaysia. http://apims.doe.gov.my/apims/General%20Info%20of%20Air%20Pollutant%20Index.pdf. Accessed 20 March 2014

  • Department of Environment Malaysia (DOE). (2005). Malaysia environmental quality report, 2004. Kuala Lumpur: Ministry of Science, Technology and Environment.

    Google Scholar 

  • Department of Environment Malaysia (DOE). (2010). Malaysia environmental quality report, 2009. Kuala Lumpur: Ministry of Science, Technology and Environment.

    Google Scholar 

  • Dominick, D., Juahir, H., Latif, M. T., Zain, S. M., & Aris, A. Z. (2012). Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmospheric Environment, 60, 172–181. doi:10.1016/j.atmosenv.2012.06.021.

    Article  CAS  Google Scholar 

  • Dragomir, E. G. (2010). Air quality index prediction using K-nearest neighbor technique. Bulletin of PG University of Ploiesti, Series Mathematics, Informatics, Physics, LXII(1/2010), 103–108.

    Google Scholar 

  • Field, A. P. (2000). Discovering statistics using SPSS for Windows. London-Thous and Oaks-New Delhi: Sage Publication.

    Google Scholar 

  • Field, A. P. (2005). Discovering statistics using SPSS (2nd ed.). London: Sage.

    Google Scholar 

  • García, I., Rodríquez, J. G., & Tenorio, Y. M. (2011). Artificial neural network models for prediction of ozone concentrations in Guadalajara, Mexico. Air quality-models and application. Nicolas Mazzeo (Ed.), ISBN:978 953-307-307-1, (pp. 35-52).

  • Giorgio, F., & Piero, M. (1996). Mathematical models for planning and controlling air quality. Proceedings of IIASA Workshop, 17.

  • Haiduc, I., & Beldean-Gale, M. S. (2011). Variation of greenhouse gases in urban areas-case study: CO2, CO and CH4 in three Romanian cities, air quality-models and applications. Prof. Dragana Popovic (Ed.), ISBN: 978953-307-307-1, InTech. http://www.intechopen.com/books/air-qualitymodelsandapplications/variationofgreenhouse-gases-in-urban areas-case-study-co2-co-and-ch4-in three-romanian-cities. Accessed 2 May 2013.

  • Hakimpoor, H., Arshad, K. A., Tat, H. H., Khani, N., & Rahmandoust, M. (2011). Artificial neural networks’ application in management. World Applied Sciences Journal, 14(7), 1008–1019.

    Google Scholar 

  • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feed-forward networks are universal approximators. Neural Networks, 2, 359–366.

    Article  Google Scholar 

  • Jain, A. K., Mao, J., & Mohiuddin, K. M. (1996). Artificial neural networks: a tutorial. Computer, 29(3), 31–44.

    Article  Google Scholar 

  • Jamal, H. H., Pillay, M. S., Zailina, H., Shamsul, B. S., Sinha, K., Huri, Z. Z., Khew, S. L., Mazrura, S., Ambu, S., Rahimah, A., & Ruzita, M. S. (2004). A study of health impact & risk assessment of urban air pollution in Klang Valley. Malaysia, Kuala Lumpur: UKM Pakarunding Sdn Bhd.

    Google Scholar 

  • Juneng, L., Latif, M. T., Tangang, F. T., & Mansor, H. (2009). Spatio–temporal characteristics of PM10 concentration across Malaysia. Atmospheric Environment, 45, 4370–4378.

    Article  Google Scholar 

  • Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., & Kolehmainen, M. (2004). Methods for imputation of missing values in air quality data set. Atmospheric Environment, 38, 2895–2907. doi:10.1016/j.atmosenv.2004.02.026.

    Article  CAS  Google Scholar 

  • Kaiser, H. F. (1958). The varimax criterion for analytical rotation in factor analysis. Psychometrika, 23(3), 187–200. doi:10.1007/BF02289233.

    Article  Google Scholar 

  • Kamal, M. M., Jailani, R., & Shauri, R. L. A. (2006). Prediction of ambient air quality based on neural network technique. 4th Student Conference on Research and Development, 115-119, doi:10.1109/SCORED.2006.4339321.

  • Kim, J. O., & Mueller, C. W. (1987). Introduction to factor analysis: what it is and how to do it. Quantitative applications in the social science series. Newbury Park: Sage University Press.

    Google Scholar 

  • Koppmann, R. (2007). Volatile organic compounds in the atmosphere. Singapore: Blackwell Publishing Ltd.

    Book  Google Scholar 

  • Kurt, A., Gulbagci, B., Karaca, F., & Alagha, O. (2008). An online air pollution forecasting system using neural networks. Environment International, 34(5), 592–598. doi:10.1016/j.envint.2007.12.020.

    Article  CAS  Google Scholar 

  • Latif, M. T., Hey, L. S., & Juneng, L. (2012). Variations of surface ozone concentration across the Klang Valley, Malaysia. Atmospheric Environment, 61, 434–445. doi:10.1016/j.atmosenv.2012.07.062.

    Article  CAS  Google Scholar 

  • Lau, J., Hung, W. T., & Cheung, C. S. (2009). Interpretation of air quality in relation to monitoring station’s surroundings. Atmospheric Environment, 43, 769–777.

    Article  CAS  Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313, 77–89. doi:10.1016/S0048 9697(02)00683-6.

    Article  CAS  Google Scholar 

  • Liu, G., Yi, Z., & Yang, S. (2007). A hierarchical intrusion detection model based on the PCA neural networks. Neurocomputing, 70, 1561–1568.

    Article  Google Scholar 

  • Mahboubeh, A., Afsaneh, A., & Gholamreza, Z. (2012). The potential of artificial neural network technique in daily and monthly ambient air temperature prediction. International Journal of Environmental Science and Development, 3(1), 33–38.

    Google Scholar 

  • Mahiyudin, W. R. W., Sahani, M., Aripin, R., Latif, M. T., Thach, T. Q., & Wong, C. M. (2013). Short-term effects of daily air pollution on mortality. Atmospheric Environment, 65, 69–79. doi:10.1016/j.atmosenv.2012.10.019.

    Article  Google Scholar 

  • Maier, H. R., & Dandy, G. C. (2001). Neural network based modelling of environmental variables: a systematic approach. Mathematical and Computer Modelling, 33, 669–682.

    Article  Google Scholar 

  • Mazrura, S., Wan Mahiyuddin, W. R., Aripin, R., Mohd Latif, T., Thach, T. Q., & Wong, C.-M. (2011). Health risk of air pollution on mortality in Klang Valley, Malaysia. Epidemiology, 22(1), 159.

    Article  Google Scholar 

  • McNeil, V. H., Cox, M. E., & Preda, M. (2005). Assessment of chemical water types and their spatial variation using multi-stage cluster analysis, Queensland, Australia. Journal of Hydrology, 310(1–4), 181–200.

    Article  Google Scholar 

  • Monteiro, A., Strunk, A., Carvalho, A., Tchepel, O., Miranda, A. I., Borrego, C., Saavedra, S., Rodríguez, A., Souto, J., Casares, J., Friese, E., & Elbern, H. (2012). Investigating a high ozone episode in a rural mountain site. Environmental Pollution, 162, 176–189.

    Article  CAS  Google Scholar 

  • Moustris, K. P., Ziomas, I. C., & Paliatsos, A. G. (2010). 3-day-ahead forecasting of regional pollution index for the pollutants NO2, CO, SO2, and O3 using artificial neural networks in Athens, Greece. Water, Air, & Soil Pollution, 209(1), 29–43. doi:10.1007/s11270-009-0179-5.

    Article  CAS  Google Scholar 

  • Mutalib, S. N. S. A., Juahir, H., Azid, A., Sharif, S. M., Latif, M. T., Aris, A. Z., Zain, S. M., & Dominick, D. (2013). Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia. Environmental Science, Processes & Impacts 1-12, doi: 10.1039/c3em00161j.

  • Niska, H., Hiltunen, T., Karppinen, A., Ruu Skanen, J., & Koleh Mainen, T. (2004). Evolving the neural network model for forecasting air pollution time series. Engineering Applications of Artificial Intelligence, 17, 159.

    Article  Google Scholar 

  • Niska, H., Rantamaki, M., Hiltunen, T., Karppinen, A., Hukko Nen, J., Ruu Skanen, J., & Koleh-Mainen, M. (2005). Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HURLEM for the forecasting of urban airborne pollutant concentrations. Atmospheric Environment, 39, 6524.

    Article  CAS  Google Scholar 

  • Norusis, M. J. (1990). SPSS base system user’s guide. Chicago, IL, USA: SPSS.

    Google Scholar 

  • O’Farrella, M., Lewisa, E., Flanagana, C., Lyonsa, W. B., & Jackman, N. (2005). Combining principal component analysis with an artificial neural network to perform online quality assessment of food as it cooks in a large scale industrial oven. Sensors and Actuators B, 107, 104–112.

    Article  Google Scholar 

  • Othman, N., Mat Jafri, M. Z., & San, L. H. (2010). Estimating particulate matter concentration over arid region using satellite remote sensing: a case study in Makkah, Saudi Arabia. Modern Applied Science, 4(11), 131–142.

    Article  CAS  Google Scholar 

  • Pandey, S., Tripathi, B., & Mishra, V. (2008). Dust deposition in a sub-tropical opencast coalmine area, India. Journal of Environmental Management, 86, 132–138.

    Article  CAS  Google Scholar 

  • Perez, P., & Reyes, J. (2006). An integrated neural network model for PM10 forecasting. Atmospheric Environment, 40, 2845–2851. doi:10.1016/j.atmosenv.2006.01.010.

    Article  CAS  Google Scholar 

  • Pires, J. C. M., Sousa, S. I. V., Pereira, M. C., Alvim-Ferraz, M. C. M., & Martins, F. G. (2008a). Management of air quality monitoring using principal component and cluster. Analysis—part I: SO2 and PM10. Atmospheric Environment, 42, 1249–1260.

    Article  CAS  Google Scholar 

  • Pires, J. C. M., Sousa, S. I. V., Pereira, M. C., Alvim-Ferraz, M. C. M., & Martins, F. G. (2008b). Management of air quality monitoring using principal component and cluster. Analysis—part II: CO, NO2 and O3. Atmospheric Environment, 42, 1261–1274.

    Article  CAS  Google Scholar 

  • Pires, J. C. M., Sousa, S. I. V., Pereira, M. C., Alvim-Ferraz, M. C. M., & Martins, F. G. (2009). Identification of redundant air quality measurements through the use of principal component analysis. Atmospheric Environment, 43, 3837–3842.

    Article  CAS  Google Scholar 

  • Rahman, N. H. A., Lee, M. H., Latif, M. T., & Suhartono. (2013). Forecasting of air pollution index with artificial neural network. Jurnal Teknologi, 63(2), 59–64.

    Google Scholar 

  • Ravi, V., & Pramodh, C. (2008). Threshold accepting trained principal component neural network and feature subset selection: application to bankruptcy prediction in banks. Applied Soft Computing, 8, 1539–1548.

    Article  Google Scholar 

  • Rech, G. (2002). Forecasting with artificial neural network models. SSE/EFI working paper series in economics and finance 491, Stockholm School of Economics.

  • Sadanaga, Y., Sengen, M., Takenaka, N., & Bandow, H. (2012). Analyses of the ozone weekend effect in Tokyo, Japan: regime of oxidant (O3 + NO2) production. Aerosol & Air Quality Research, 12, 161–168.

    CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric chemistry and physics. United States: John Wiley & Sons Inc.

    Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environmental Modelling & Software, 22, 464–475. doi:10.1016/j.envsoft.2006.02.001.

    Article  Google Scholar 

  • Siew, L. Y., Chin, L. Y., & Wee, P. M. J. (2008). ARIMA and integrated ARFIMA models for forecasting air pollution index in Shah Alam, Selangor. Malaysian Journal of Analytical Sciences, 12(1), 257–263.

    Google Scholar 

  • Simeonov, V., Einax, J. W., Stanimirova, I., & Kraft, J. (2002). Environmetric modeling and interpretation of river water monitoring data. Analytical and Bioanalytical Chemistry, 374, 898–905.

    Article  CAS  Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37, 4119–4224.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38, 3980–3992. doi:10.1016/j.watres.2004.06,011.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques—a case study. Analytica Chimica Acta, 538, 355–374. doi:10.1016/j.aca.2005.02.006.

    Article  CAS  Google Scholar 

  • Skrbi, C. B., Duri, S. I., & C-Mladenovi, C. N. (2007). Principal component analysis for soil contamination with organochlorine compounds. Chemosphere, 68, 2144–2152.

    Article  Google Scholar 

  • Sohn, S. H., Oh, S. C., & Yeo, Y. K. (1999). Prediction of air pollutants by using an artificial neural network. Korean Journal of Chemical Engineering, 16(3), 382–387. doi:10.1007/BF02707129.

    Article  CAS  Google Scholar 

  • Sousa, S. I. V., Martins, F. G., Alvim-Ferraz, M. C. M., & Pereira, M. C. (2007). Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling & Software, 22, 97–103.

    Article  Google Scholar 

  • Sun, G., Hoff, S. J., Zelle, B. C., & Nelson, M. A. (2008). Development and comparison of backpropagation and generalized regression neural network models to predict diurnal and seasonal gas and PM10 concentrations and emissions from swine buildings. American Society of Agricultural and Biological Engineers, 51(2), 685–694.

    CAS  Google Scholar 

  • Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). New York: Harper & Row.

    Google Scholar 

  • Tecer, L. H. (2007). Prediction of SO2 and PM concentrations in a coastal mining area (Zonguldak, Turkey) using an artificial neural network. Polish Journal of Environmental Studies, 16(4), 633–638.

    CAS  Google Scholar 

  • Viana, M., Querol, X., Alastuey, A., Gil, J. I., & Menéndez, M. (2006). Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere, 65, 2411–2418.

    Article  CAS  Google Scholar 

  • Wei, X., Liu, Q., Lam, K. S., & Wang, T. (2012). Impact of precursor levels and global warming on peak ozone concentration in the Pearl River Delta Region of China. Advances in Atmospheric Sciences, 29, 635–645.

    Article  CAS  Google Scholar 

  • Wei-Zhen, L., Hong-Di, H., & Li-Yun, D. (2011). Performance assessment of air quality monitoring networks using principal component analysis and cluster analysis. Building and Environment, 46, 577–583.

    Article  Google Scholar 

  • Xie, H., Ma, F. & Bai, Q. (2009). Prediction of indoor air quality using artificial neural networks. 2009 Fifth International Conference on Natural Computation, 412–418.

  • Yahaya, N., Ali, A., & Ishak, F. (2006) Air pollution index (API) and the effects on human health: case study in Terengganu City, Terengganu, Malaysia. Paper submitted to the International Association for People Environmental Studies (IAPS) Conference, September 2006, Alexandria, Egypt.

  • Yetilmezsoy, K., & Demirel, S. (2007). Artificial neural network (ANN) approach for modeling of Cd(II) adsorption from aqueous solution by Antep Pistachio (Pistacia Vera L.) shells. Journal of Hazardous Materials, 153, 1288–1300.

    Article  Google Scholar 

  • Zekic-Susac, M., Pfeifer, S., & Djurdjevic, I. (2010). Classification of entrepreneurial intentions by neural networks, decision trees and support vector machines. Croatian Operational Research Review, 1, 62–73.

    Google Scholar 

  • Zelkic-Susac, M., Sarlija, N., & Pfeifer, S. (2013). Combining PCA analysis and artificial neural networks in modelling entrepreneurial intentions of students. Crotian Operational Research Review, 4, 306–317.

    Google Scholar 

  • Zhang, G., Eddy Patuwo, B., & Hu, M. Y. (1998). Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting, 14, 35–62. doi:10.1016/S0169-2070(97)00044-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Air Quality Division of the Department of Environment (DOE) under the Ministry of Natural Resource and Environment, Malaysia, for giving us permission to utilize air quality data, advice, guidance, and support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafizan Juahir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azid, A., Juahir, H., Toriman, M.E. et al. Prediction of the Level of Air Pollution Using Principal Component Analysis and Artificial Neural Network Techniques: a Case Study in Malaysia. Water Air Soil Pollut 225, 2063 (2014). https://doi.org/10.1007/s11270-014-2063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2063-1

Keywords

Navigation