Skip to main content

Advertisement

Log in

Highly Efficient Removal of Dye from Water Using Magnetic Carrageenan/Silica Hybrid Nano-adsorbents

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The discharge of effluents containing organic dyes extensively used in the industry is a matter of concern because these pollutants can cause harmful effects in the environment and human health. In this work, magnetic iron oxide nanoparticles coated with κ-carrageenan/silica organic/inorganic hybrid shells were synthesized and used as novel adsorbents for the magnetically assisted removal of methylene blue (MB) from water. The kinetics of adsorption was well predicted using the pseudo-second-order equation. These hybrid materials exhibited high adsorption capacity (530 mg/g maximum) that could be ascribed to surfaces enriched with ester sulfate groups due to extensive grafting of κ-carrageenan over the siliceous domains by using a new surface modification method. The sorbents were long-term colloidal stable and could be easily regenerated after rinsing with KCl aqueous solution. The MB removal efficiency over six consecutive adsorption/desorption cycles was above 97%, which demonstrates the reusability potential and robustness of these hybrid sorbents. This is a new type of adsorbent that promises extensive application in the removal of organic dyes from wastewaters using magnetic separation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abkenar, S. D., Khoobi, M., Tarasi, R., Hosseini, M., Shafiee, A., & Ganjali, M. R. (2015). Fast removal of methylene blue from aqueous solution using magnetic-modified Fe3O4 nanoparticles. Journal of Environmental Engineering, 141(1), 04014049.

    Article  Google Scholar 

  • Asgher, M. (2011). Biosorption of reactive dyes: a review. Water, Air, & Soil Pollution, 223(5), 2417–2435.

    Article  Google Scholar 

  • Badruddoza, A. Z. M., Hazel, G. S. S., Hidajat, K., & Uddin, M. S. (2010). Synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nano-adsorbent for removal of methylene blue. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 367(1–3), 85–95.

    Article  CAS  Google Scholar 

  • Bai, L., Li, Z., Zhang, Y., Wang, T., Lu, R., Zhou, W., et al. (2015). Synthesis of water-dispersible graphene-modified magnetic polypyrrole nanocomposite and its ability to efficiently adsorb methylene blue from aqueous solution. Chemical Engineering Journal, 279, 757–766.

    Article  CAS  Google Scholar 

  • Carvalho, R. S., Daniel-da-Silva, A. L., & Trindade, T. (2016). Uptake of europium(III) from water using magnetite nanoparticles. Particle & Particle Systems Characterization, 33(3), 150–157.

    Article  CAS  Google Scholar 

  • Cheng, S., Zhang, L., Xia, H., Peng, J., Shu, J., & Li, C. (2016). Ultrasound and microwave-assisted preparation of Fe-activated carbon as an effective low-cost adsorbent for dyes wastewater treatment. RSC Advances, 6(82), 78936–78946.

    Article  CAS  Google Scholar 

  • Chien, S. H., & Clayton, W. R. (1980). Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal, 44(2), 265.

    Article  CAS  Google Scholar 

  • Daniel-da-Silva, A. L., Carvalho, R., & Trindade, T. (2013). Magnetic hydrogel nanocomposites and composite nanoparticles—a review of recent patented works. Recent Patents on Nanotechnology, 7(2), 153–166.

    Article  CAS  Google Scholar 

  • Daniel-da-Silva, A. L., Salgueiro, A. M., Creaney, B., Oliveira-Silva, R., Silva, N. J. O., & Trindade, T. (2015). Carrageenan-grafted magnetite nanoparticles as recyclable sorbents for dye removal. Journal of Nanoparticle Research, 17(7), 302.

    Article  Google Scholar 

  • EL-Mekkawi, D. M., Ibrahim, F. A., & Selim, M. M. (2016). Removal of methylene blue from water using zeolites prepared from Egyptian kaolins collected from different sources. Journal of Environmental Chemical Engineering, 4(2), 1417–1422.

    Article  CAS  Google Scholar 

  • Estlander, T. (1988). Allergic dermatoses and respiratory diseases from reactive dyes. Contact Dermatitis, 18(5), 290–297.

    Article  CAS  Google Scholar 

  • Fradj, A. B., Hamouda, S. B., Ouni, H., Lafi, R., Gzara, L., & Hafiane, A. (2014). Removal of methylene blue from aqueous solutions by poly(acrylic acid) and poly(ammonium acrylate) assisted ultrafiltration. Separation and Purification Technology, 133, 76–81.

    Article  CAS  Google Scholar 

  • Giles, C. H., Smith, D., & Huitson, A. (1974). A general treatment and classification of the solute adsorption isotherm. I. Theoretical. Journal of Colloid and Interface Science, 47(3), 755–765.

    Article  CAS  Google Scholar 

  • Girginova, P. I., Daniel-da-Silva, A. L., Lopes, C. B., Figueira, P., Otero, M., Amaral, V. S., et al. (2010). Silica coated magnetite particles for magnetic removal of Hg2+ from water. Journal of Colloid and Interface Science, 345(2), 234–240.

    Article  CAS  Google Scholar 

  • Gonzales, C. A., Riboli, E., & Lopez-Abente, G. (1988). Bladder cancer among workers in the textile industry: results of a Spanish case-control study. American Journal of Industrial Medicine, 14(6), 673–680.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Suhas. (2009). Application of low-cost adsorbents for dye removal—a review. Journal of Environmental Management, 90(8), 2313–2342.

    Article  CAS  Google Scholar 

  • Hinz, C. (2001). Description of sorption data with isotherm equations. Geoderma, 99(3–4), 225–243.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76(4), 332–340.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.

    Article  CAS  Google Scholar 

  • Inbaraj, B. S., & Chen, B. H. (2011). Dye adsorption characteristics of magnetite nanoparticles coated with a biopolymer poly(γ-glutamic acid). Bioresource Technology, 102(19), 8868–8876.

    Article  Google Scholar 

  • Kittappa, S., Pichiah, S., Kim, J. R., Yoon, Y., Snyder, S. A., & Jang, M. (2015). Magnetised nanocomposite mesoporous silica and its application for effective removal of methylene blue from aqueous solution. Separation and Purification Technology, 153, 67–75.

    Article  CAS  Google Scholar 

  • Kristanti, R. A., Kamisan, M. K. A., & Hadibarata, T. (2016). Treatability of methylene blue solution by adsorption process using Neobalanocarpus hepmii and Capsicum annuum. Water, Air, & Soil Pollution, 227(5), 134.

    Article  Google Scholar 

  • Lagergren, S. (1898). Zur Theorie der Sogenannten Adsorption Gelöster Stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar, 24, 1–39.

    Google Scholar 

  • Li, L., Ni, R., Shao, Y., & Mao, S. (2014). Carrageenan and its applications in drug delivery. Carbohydrate Polymers, 103, 1–11.

    Article  CAS  Google Scholar 

  • Liu, J., Zhan, X., Wan, J., Wang, Y., & Wang, C. (2015). Review for carrageenan-based pharmaceutical biomaterials: favourable physical features versus adverse biological effects. Carbohydrate Polymers, 121, 27–36.

    Article  CAS  Google Scholar 

  • Lopes, C. B., Figueira, P., Tavares, D. S., Lin, Z., Daniel-da-Silva, A. L., Duarte, A. C., et al. (2013). Core-shell magnetite-silica dithiocarbamate-derivatised particles achieve the Water Framework Directive quality criteria for mercury in surface waters. Environmental Science and Pollution Research International, 20(9), 5963–5974.

    Article  CAS  Google Scholar 

  • Mahdavinia, G. R., Bazmizeynabad, F., & Seyyedi, B. (2013). kappa-Carrageenan beads as new adsorbent to remove crystal violet dye from water: adsorption kinetics and isotherm. Desalination and Water Treatment, 53(9), 2529–2539.

    Article  Google Scholar 

  • McKay, G., Allen, S. J., McConvey, I. F., & Walters, J. H. R. (1984). External mass transfer and homogeneous solid-phase diffusion effects during the adsorption of dyestuffs. Industrial & Engineering Chemistry Process Design and Development, 23(2), 221–226.

    Article  CAS  Google Scholar 

  • Mehta, D., Mazumdar, S., & Singh, S. K. (2015). Magnetic adsorbents for the treatment of water/wastewater—a review. Journal of Water Process Engineering, 7, 244–265.

    Article  Google Scholar 

  • Mishra, A., & Clark, J. H. (Eds.). (2013). Green materials for sustainable water remediation and treatment. Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Mittal, H., & Ray, S. S. (2016). A study on the adsorption of methylene blue onto gum ghatti/TiO2 nanoparticles-based hydrogel nanocomposite. International Journal of Biological Macromolecules, 88, 66–80.

    Article  CAS  Google Scholar 

  • Mohammadi, A., Daemi, H., & Barikani, M. (2014). Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles. International Journal of Biological Macromolecules, 69, 447–455.

    Article  CAS  Google Scholar 

  • Nassar, M. Y., & Khatab, M. (2016). Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nano-adsorbent for potential textile dye removal. RSC Advances, 6(83), 79688–79705.

    Article  CAS  Google Scholar 

  • Oliveira-Silva, R., Pinto da Costa, J., Vitorino, R., & Daniel-da-Silva, A. L. (2015). Magnetic chelating nanoprobes for enrichment and selective recovery of metalloproteases from human saliva. Journal of Materials Chemistry B, 3(2), 238–249.

    Article  CAS  Google Scholar 

  • Ong, S.-T., Keng, P.-S., Lee, W.-N., Ha, S.-T., & Hung, Y.-T. (2011). Dye waste treatment. Water, 3(4), 157–176.

    Article  CAS  Google Scholar 

  • Pinheiro, P. C., Tavares, D. S., Daniel-da-Silva, A. L., Lopes, C. B., Pereira, E., Araújo, J. P., et al. (2014). Ferromagnetic sorbents based on nickel nanowires for efficient uptake of mercury from water. ACS Applied Materials & Interfaces, 6(11), 8274–8280.

    Article  CAS  Google Scholar 

  • Qiu, H., Lv, L., Pan, B., Zhang, Q., Zhang, W., & Zhang, Q. (2009). Critical review in adsorption kinetic models. Journal of Zhejiang University Science A, 10(5), 716–724.

    Article  CAS  Google Scholar 

  • Rocher, V., Bee, A., Siaugue, J.-M., & Cabuil, V. (2010). Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. Journal of Hazardous Materials, 178(1–3), 434–439.

    Article  CAS  Google Scholar 

  • Saber-Samandari, S., Saber-Samandari, S., Nezafati, N., & Yahya, K. (2014). Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads. Journal of Environmental Management, 146, 481–490.

    Article  CAS  Google Scholar 

  • Salgueiro, A. M., Daniel-da-Silva, A. L., Girão, A. V., Pinheiro, P. C., & Trindade, T. (2013). Unusual dye adsorption behavior of κ-carrageenan coated superparamagnetic nanoparticles. Chemical Engineering Journal, 229, 276–284.

    Article  CAS  Google Scholar 

  • Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S. K., Grace, A. N., & Bhatnagar, A. (2016). Role of nanomaterials in water treatment applications: a review. Chemical Engineering Journal, 306, 1116–1137.

    Article  CAS  Google Scholar 

  • Shao, Y., Zhou, L., Bao, C., & Ma, J. (2015). A facile approach to the fabrication of rattle-type magnetic carbon nanospheres for removal of methylene blue in water. Carbon, 89, 378–391.

    Article  CAS  Google Scholar 

  • Shao, Y., Zhou, L., Bao, C., Ma, J., Liu, M., & Wang, F. (2016). Magnetic responsive metal–organic frameworks nanosphere with core–shell structure for highly efficient removal of methylene blue. Chemical Engineering Journal, 283, 1127–1136.

    Article  CAS  Google Scholar 

  • Soares, S. F., Trindade, T., & Daniel-da-Silva, A. L. (2015). Carrageenan-silica hybrid nanoparticles prepared by a non-emulsion method. European Journal of Inorganic Chemistry, 2015(27), 4588–4594.

    Article  CAS  Google Scholar 

  • Soares, S. F., Simões, T. R., António, M., Trindade, T., & Daniel-da-Silva, A. L. (2016). Hybrid nanoadsorbents for the magnetically assisted removal of metoprolol from water. Chemical Engineering Journal, 302, 560–569.

    Article  CAS  Google Scholar 

  • Soedjak, H. S. (1994). Colorimetric determination of carrageenans and other anionic hydrocolloids with methylene blue. Analytical Chemistry, 66(24), 4514–4518.

    Article  CAS  Google Scholar 

  • Sousa, F. L., Daniel-da-Silva, A. L., Silva, N. J. O., & Trindade, T. (2015). Bionanocomposites for the magnetic removal of water pollutants. In V. K. Thakur (Ed.), Eco-friendly polymer nanocomposites: chemistry and applications. New Delhi: Springer.

    Google Scholar 

  • Tan, Y., Chen, M., & Hao, Y. (2012). High efficient removal of Pb (II) by amino-functionalized Fe3O4 magnetic nano-particles. Chemical Engineering Journal, 191, 104–111.

    Article  CAS  Google Scholar 

  • Tan, K. B., Vakili, M., Horri, B. A., Poh, P. E., Abdullah, A. Z., & Salamatinia, B. (2015). Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Separation and Purification Technology, 150, 229–242.

    Article  CAS  Google Scholar 

  • Tavares, D. S., Daniel-da-Silva, A. L., Lopes, C. B., Silva, N. J. O., Amaral, V. S., Rocha, J., et al. (2013). Efficient sorbents based on magnetite coated with siliceous hybrid shells for removal of mercury ions. Journal of Materials Chemistry A, 1(28), 8134.

    Article  CAS  Google Scholar 

  • Üner, O., Geçgel, Ü., & Bayrak, Y. (2016). Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus rind: kinetic, isotherm, thermodynamic, and mechanism analysis. Water, Air, & Soil Pollution, 227(7), 247.

    Article  Google Scholar 

  • Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A. Z., Ibrahim, M. H., Tan, K. B., et al. (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydrate Polymers, 113, 115–130.

    Article  CAS  Google Scholar 

  • Vakili, M., Rafatullah, M., Salamatinia, B., Ibrahim, M. H., & Abdullah, A. Z. (2015). Elimination of reactive blue 4 from aqueous solutions using 3-aminopropyl triethoxysilane modified chitosan beads. Carbohydrate Polymers, 132, 89–96.

    Article  CAS  Google Scholar 

  • Wang, S., Boyjoo, Y., Choueib, A., & Zhu, Z. H. (2005). Removal of dyes from aqueous solution using fly ash and red mud. Water Research, 39(1), 129–138.

    Article  CAS  Google Scholar 

  • Yang, N., Zhu, S., Zhang, D., & Xu, S. (2008). Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Materials Letters, 62(4–5), 645–647.

    Article  CAS  Google Scholar 

  • Yang, Z., Li, M., Yu, M., Huang, J., Xu, H., Zhou, Y., et al. (2016). A novel approach for methylene blue removal by calcium dodecyl sulfate enhanced precipitation and microbial flocculant GA1 flocculation. Chemical Engineering Journal, 303, 1–13.

    Article  CAS  Google Scholar 

  • Zhang, S., Zeng, M., Li, J., Li, J., Xu, J., & Wang, X. (2014). Porous magnetic carbon sheets from biomass as an adsorbent for the fast removal of organic pollutants from aqueous solution. Journal of Materials Chemistry A, 2(12), 4391.

    Article  CAS  Google Scholar 

  • Zhang, X., Zeng, T., Wang, S., Niu, H., Wang, X., & Cai, Y. (2015). One-pot synthesis of C18-functionalized core-shell magnetic mesoporous silica composite as efficient sorbent for organic dye. Journal of Colloid and Interface Science, 448, 189–196.

    Article  CAS  Google Scholar 

  • Zhao, Q.-S., Huang, Y.-F., Li, Y., Zhang, J.-M., & Wang, H.-Y. (2014). Functionalized magnetic microparticles for fast and efficient removal of textile dyes from aqueous solution. Water, Air, & Soil Pollution, 225(6), 1950.

    Article  Google Scholar 

Download references

Acknowledgments

This work was developed in the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC, and when appropriate co-financed by the European Regional Development Fund (FEDER) under the PT2020 Partnership Agreement. Funding to the projects PTDC/CTM-NAN/120668/2010 and IF/00405/2014/CP1222/CT0007 by FEDER through COMPETE and by national funds through FCT is acknowledged. The authors thank the RNME (National Electronic Microscopy Network) for microscopy facilities. A. L. D.-d.-S. acknowledges FCT for the research contract under the Program ‘Investigador FCT’ 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana L. Daniel-da-Silva.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1607 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, S.F., Simões, T.R., Trindade, T. et al. Highly Efficient Removal of Dye from Water Using Magnetic Carrageenan/Silica Hybrid Nano-adsorbents. Water Air Soil Pollut 228, 87 (2017). https://doi.org/10.1007/s11270-017-3281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3281-0

Keywords

Navigation