Skip to main content

Advertisement

Log in

Study on Sorption Characteristics of Uranium onto Biochar Derived from Eucalyptus Wood

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, the sorption characteristics of U(VI) onto eucalyptus biochar as a function of various operating parameters such as solution pH, initial metal ion concentration, contact time and ionic strength of the medium are reported. Biochar was characterised using various techniques such as CHNS element analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). SEM analysis showed the presence of micro- and macropores in the sorbent, and FTIR spectra confirmed the presence of functional groups like carboxylic (−COOH), hydroxyls(−OH), carbonyls(–C=O), etc. Maximum sorption of about 95% is found to occur in the pH range of 5 to 6. U(VI) sorption onto biochar reached equilibrium within 20 min at pH 5.5. The kinetic data were analysed using both pseudo-first-order and pseudo-second-order kinetic models, and the latter is found to be more appropriate to explain the observed kinetics. The equilibrium data were correlated with Langmuir and Freundlich models, and the maximum monolayer adsorption capacity obtained from the Langmuir model was 27.2 mg/g at 293 K. From EDS, FTIR and XPS measurements, it is found that the sorption process involves chemical interaction between the U(VI) and the surface functional groups on the adsorbent. Efficient removal of low level of uranium from ammonium diuranate supernatant demonstrates its utility as sorbent for waste water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19–33. doi:10.1016/j.chemosphere.2013.10.071.

    Article  CAS  Google Scholar 

  • Ahmed, S. H., El Sheikh, E. M., & Morsy, A. M. A. (2014). Potentiality of uranium biosorption from nitric acid solutions using shrimp shells. Journal of Environmental Radioactivity, 134, 120–127. doi:10.1016/j.jenvrad.2014.03.007.

    Article  CAS  Google Scholar 

  • Brick, S. (2010). Biochar: assessing the promise and risks to guide US policy, NRDC issue paper November 2010. USA: Natural Resource Defense Council.

    Google Scholar 

  • Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419–428. doi:10.1016/j.biortech.2011.11.084.

    Article  CAS  Google Scholar 

  • Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., et al. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102(19), 8877–8884. doi:10.1016/j.biortech.2011.06.078.

    Article  CAS  Google Scholar 

  • de la Rosa, J. M., Paneque, M., Miller, A. Z., & Knicker, H. (2014). Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Science of the Total Environment, 499, 175–184. doi:10.1016/j.scitotenv.2014.08.025.

    Article  Google Scholar 

  • Ding, W., Dong, X., Ime, I. M., Gao, B., & Ma, L. Q. (2014). Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere, 105, 68–74. doi:10.1016/j.chemosphere.2013.12.042.

    Article  CAS  Google Scholar 

  • Emsley, J. (2001). Nature’s building blocks (1st ed.). New York: Oxford University Press.

  • Figueiredo, J. L., Pereira, M. F. R., Freitas, M. M. A., & Órfão, J. J. M. (1999). Modification of the surface chemistry of activated carbons. Carbon, 37(9), 1379–1389. doi:10.1016/S0008-6223(98)00333-9.

    Article  CAS  Google Scholar 

  • Hadjittofi, L., & Pashalidis, I. (2015). Uranium sorption from aqueous solutions by activated biochar fibres investigated by FTIR spectroscopy and batch experiments. Journal of Radioanalytical and Nuclear Chemistry, 304(2), 897–904. doi:10.1007/s10967-014-3868-5.

    Article  CAS  Google Scholar 

  • Ho, Y.-S., & McKay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Process Safety and Environmental Protection, 76(2), 183–191. doi:10.1205/095758298529326.

    Article  CAS  Google Scholar 

  • Ho, Y.-S., & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34(3), 735–742. doi:10.1016/S0043-1354(99)00232-8.

    Article  CAS  Google Scholar 

  • Ho, Y.-S., & Ofomaja, A. E. (2006). Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. Journal of Hazardous Materials, 129(1–3), 137–142. doi:10.1016/j.jhazmat.2005.08.020.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., & Zouboulis, A. I. (2013). Removal of uranium from contaminated drinking water: a mini review of available treatment methods. Desalination and Water Treatment, 51(13–15), 2915–2925. doi:10.1080/19443994.2012.748300.

    Article  CAS  Google Scholar 

  • Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 44(4), 1247–1253. doi:10.1021/es9031419.

    Article  CAS  Google Scholar 

  • Khan, S., Chao, C., Waqas, M., Arp, H. P. H., & Zhu, Y.-G. (2013). Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environmental Science & Technology, 47(15), 8624–8632. doi:10.1021/es400554x.

    Article  CAS  Google Scholar 

  • Kumar, S., Loganathan, V. A., Gupta, R. B., & Barnett, M. O. (2011). An assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. Journal of Environmental Management, 92(10), 2504–2512. doi:10.1016/j.jenvman.2011.05.013.

    Article  CAS  Google Scholar 

  • Kütahyalı, C., & Eral, M. (2004). Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Separation and Purification Technology, 40(2), 109–114. doi:10.1016/j.seppur.2004.01.011.

    Article  Google Scholar 

  • Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: Science and Technology (1st ed.). London: Earthscan Limited.

  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresource Technology, 160, 191–202. doi:10.1016/j.biortech.2014.01.120.

    Article  CAS  Google Scholar 

  • Mohanty, P., Nanda, S., Pant, K. K., Naik, S., Kozinski, J. A., & Dalai, A. K. (2013). Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. Journal of Analytical and Applied Pyrolysis, 104, 485–493. doi:10.1016/j.jaap.2013.05.022.

    Article  CAS  Google Scholar 

  • Pashalidis, I., & Buckau, G. (2007). U(VI) mono-hydroxo humate complexation. [journal article]. Journal of Radioanalytical and Nuclear Chemistry, 273(2), 315–322. doi:10.1007/s10967-007-6860-5.

    Article  CAS  Google Scholar 

  • Patnukao, P., Kongsuwan, A., & Pavasant, P. (2008). Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. bark. Journal of Environmental Sciences, 20(9), 1028–1034. doi:10.1016/S1001-0742(08)62145-2.

    Article  CAS  Google Scholar 

  • Qian, L., & Chen, B. (2013). Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles. Environmental Science & Technology, 47(15), 8759–8768. doi:10.1021/es401756h.

    CAS  Google Scholar 

  • Rouquerol, F., Rouquerol, J., Sing, K. S. W., Maurin, G., & Llewellyn, P. (2014). 1—introduction. In Adsorption by powders and porous solids (Second ed., pp. 1–24). Oxford: Academic Press.

    Google Scholar 

  • Rule, P. K. B., & Gonte, R. R. (2014). Uranium(VI) remediation from aqueous environment using impregnated cellulose beads. Journal of Environmental Radioactivity, 136, 22–29. doi:10.1016/j.jenvrad.2014.05.004.

    Article  CAS  Google Scholar 

  • Saini, A. S., & Melo, J. S. (2015). Biosorption of uranium by human black hair. Journal of Environmental Radioactivity, 142, 29–35. doi:10.1016/j.jenvrad.2015.01.006.

    Article  CAS  Google Scholar 

  • Stopa, L. C. B., & Yamaura, M. (2010). Uranium removal by chitosan impregnated with magnetite nanoparticles: adsorption and desorption. International Journal of Nuclear Energy Science and Technology, 5(4), 283–289. doi:10.1504/ijnest.2010.035538.

    Article  CAS  Google Scholar 

  • Sun, L., Wan, S., & Luo, W. (2013). Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies. Bioresource Technology, 140, 406–413. doi:10.1016/j.biortech.2013.04.116.

    Article  CAS  Google Scholar 

  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., et al. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85. doi:10.1016/j.chemosphere.2014.12.058.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Lima, I. M., Thomas Klasson, K., Chang, S., Wartelle, L. H., & Rodgers, J. E. (2010). Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry, 58(9), 5538–5544. doi:10.1021/jf9044217.

    Article  CAS  Google Scholar 

  • WHO. (2012). Uranium in drinking-water, background document for development of WHO guidelines for drinking-water quality. Geneva: World Health Organization.

    Google Scholar 

  • Xu, X., Cao, X., & Zhao, L. (2013). Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere, 92(8), 955–961. doi:10.1016/j.chemosphere.2013.03.009.

    Article  CAS  Google Scholar 

  • Yakout, S. M. (2016). Effect of porosity and surface chemistry on the adsorption-desorption of uranium(VI) from aqueous solution and groundwater. [journal article]. Journal of Radioanalytical and Nuclear Chemistry, 308(2), 555–565. doi:10.1007/s10967-015-4408-7.

    Article  CAS  Google Scholar 

  • Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. doi:10.1016/j.fuel.2006.12.013.

    Article  CAS  Google Scholar 

  • Zhang, Z.-B., Cao, X.-H., Liang, P., & Liu, Y.-H. (2013). Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization. [journal article]. Journal of Radioanalytical and Nuclear Chemistry, 295(2), 1201–1208. doi:10.1007/s10967-012-2017-2.

    Article  CAS  Google Scholar 

  • Zhao, C., Li, X., Ding, C., Liao, J., Du, L., Yang, J., et al. (2016a). Characterization of uranium bioaccumulation on a fungal isolate Geotrichum sp. dwc-1 as investigated by FTIR, TEM and XPS. [journal article]. Journal of Radioanalytical and Nuclear Chemistry, 310(1), 165–175. doi:10.1007/s10967-016-4797-2.

    Article  CAS  Google Scholar 

  • Zhao, C., Liu, J., Tu, H., Li, F., Li, X., Yang, J., et al. (2016b). Characteristics of uranium biosorption from aqueous solutions on fungus Pleurotus ostreatus. [journal article]. Environmental Science and Pollution Research, 23(24), 24846–24856. doi:10.1007/s11356-016-7722-x.

    Article  CAS  Google Scholar 

  • Zhou, L., Huang, Z., Luo, T., Jia, Y., Liu, Z., & Adesina, A. A. (2015). Biosorption of uranium(VI) from aqueous solution using phosphate-modified pine wood sawdust. [journal article]. Journal of Radioanalytical and Nuclear Chemistry, 303(3), 1917–1925. doi:10.1007/s10967-014-3725-6.

    CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Dr. K.S. Pradeepkumar for his continous support and motivation. The authors acknowledge Dr. Aditi Chakraborty, Health Physics Division, BARC, for the CHNS element analysis and Mr. Viju Chirail, Radiopharmaceutical Division, BARC, for recording the FTIR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayakriti Mishra.

Electronic Supplementary Material

ESM 1

(DOCX 8392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, V., Sureshkumar, M.K., Gupta, N. et al. Study on Sorption Characteristics of Uranium onto Biochar Derived from Eucalyptus Wood. Water Air Soil Pollut 228, 309 (2017). https://doi.org/10.1007/s11270-017-3480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3480-8

Keywords

Navigation