Skip to main content
Log in

Removal of Cu(II) Ions from Aqueous Solution by Magnetic Chitosan-Tripolyphosphate Modified Silica-Coated Adsorbent: Characterization and Mechanisms

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A magnetic chitosan-modified Fe3O4@SiO2 with sodium tripolyphosphate adsorbent (MTPCS) was synthesized by surface modification of Fe3O4@SiO2 with chitosan using sodium tripolyphosphate (STPP) as the cross-linker in buffer solution for the adsorption of Cu(II) ions from aqueous solution. The structure and morphology of this magnetic nanoadsorbent were examined by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area measurements, Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The effects of initial pH, adsorbent amount, and initial concentration of heavy metal ions were investigated by batch experiments. Moreover, adsorption isotherms, kinetics, and thermodynamics were studied to understand the mechanism of adsorbing metal ions by synthesized MTPCS. The results revealed that adsorption kinetics was best depicted by the pseudo-second-order rate mode and intraparticle-diffusion models. The adsorption isotherm fitted well to the Langmuir model. Moreover, thermodynamic study verified the adsorption process was endothermic and spontaneous in nature. The maximum adsorption occurred at pH 5 ± 0.1, and the adsorbent could be used as a reusable adsorbent with convenient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbas, A., Al-Amer, A. M., Laoui, T., Al-Marri, M. J., Nasser, M. S., Khraisheh, M., & Atieh, M. A. (2016). Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Separation and Purification Technology, 157, 141–161.

    Article  Google Scholar 

  • Ali, I. (2012). New generation adsorbents for water treatment. Chemical Reviews, 112(10), 5073–5091.

    Article  CAS  Google Scholar 

  • Arous, O., Gherrou, A., & Kerdjoudj, H. (2004). Removal of Ag (Ӏ), Cu (II) and Zn (ӀӀӀ) ions with a supported liquid membrane containing cryptands as carriers. Desalination, 161(3), 295–303.

    Article  CAS  Google Scholar 

  • Banerjee, S. S., & Chen, D. H. (2007). Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. Journal of Hazardous Materials, 147(3), 792–799.

    Article  CAS  Google Scholar 

  • Chan, P. Y., Ng, S. L., Seng, C. E., & Lim, P. E. (2012). Removal of Cu(II) from aqueous solutions by living and non-living cultured sludges: equilibrium modelling. International Journal of Environmental Technology and Management, 15(1), 79–93.

    Article  CAS  Google Scholar 

  • Chang, Y. C., & Chen, D. H. (2005). Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of cu(II) ions. Journal of Colloid and Interface Science, 283(2), 446–451.

    Article  CAS  Google Scholar 

  • Demiral, H., & Güngör, C. (2016). Adsorption of copper (II) from aqueous solutions on activated carbon prepared from grape bagasse. Journal of Cleaner Production, 124, 103–113.

    Article  CAS  Google Scholar 

  • Deng, H., Li, X., Peng, Q., Wang, X., Chen, J., & Li, Y. (2005). Monodisperse magnetic single-crystal ferrite microspheres. Angewandte Chemie, 117(18), 2842–2845.

    Article  Google Scholar 

  • Dib, A., & Makhloufi, L. (2004). Cementation treatment of copper in wastewater: mass transfer in a fixed bed of iron spheres. Chemical Engineering and Processing: Process Intensification, 43(10), 1265–1273.

    Article  CAS  Google Scholar 

  • Doğan, M., Türkyilmaz, A., Alkan, M., & Demirbaş, Ö. (2009). Adsorption of copper (II) ions onto sepiolite and electrokinetic properties. Desalination, 238(1–3), 257–270.

    Google Scholar 

  • Donia, A. M., Atia, A. A., & Elwakeel, K. Z. (2008). Selective separation of mercury (II) using magnetic chitosan resin modified with Schiff’s base derived from thiourea and glutaraldehyde. Journal of Hazardous Materials, 151(2), 372–379.

    Article  CAS  Google Scholar 

  • España, J. S., Pamo, E. L., Pastor, E. S., Andrés, J. R., & Rubí, J. A. M. (2006). The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid mine waters. Iberian Pyrite Belt. Aquatic Geochemistry, 12(3), 269–298.

    Article  Google Scholar 

  • da Fonseca, M. G., de Oliveira, M. M., Arakaki, L. N., Espinola, J. G., & Airoldi, C. (2005). Natural vermiculite as an exchanger support for heavy cations in aqueous solution. Journal of Colloid and Interface Science, 285(1), 50–55.

    Article  Google Scholar 

  • Guibal, E. (2004). Interactions of metal ions with chitosan-based sorbents: a review. Separation and Purification Technology, 38(1), 43–74.

    Article  CAS  Google Scholar 

  • Hao, Y. M., Man, C., & Hu, Z. B. (2010). Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. Journal of Hazardous Materials, 184(1), 392–399.

    Article  CAS  Google Scholar 

  • Hasan, S., Ghosh, T. K., Viswanath, D. S., & Boddu, V. M. (2008). Dispersion of chitosan on perlite for enhancement of copper(II) adsorption capacity. Journal of Hazardous Materials, 152(2), 826–837.

    Article  CAS  Google Scholar 

  • Hsieh, S. H., Horng, J. J., & Tsai, C. K. (2006). Growth of carbon nanotube on micro-sized Al2O3 particle and its application to adsorption of metal ions. Journal of Materials Research, 21(5), 1269–1273.

    Article  CAS  Google Scholar 

  • Li, N., & Bai, R. (2005). Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Separation and Purification Technology, 42(3), 237–247.

    Article  CAS  Google Scholar 

  • Lin, L. C., Li, J. K., & Juang, R. S. (2008). Removal of Cu (II) and Ni (II) from aqueous solutions using batch and fixed-bed ion exchange processes. Desalination, 225(1–3), 249–259.

    Article  CAS  Google Scholar 

  • Liu, Y., Man, C., & Hao, Y. (2013). Study on the adsorption of Cu(II) by EDTA functionalized Fe3O4 magnetic nano-particles. Chemical Engineering Journal, 218(218), 46–54.

    Article  CAS  Google Scholar 

  • Mi, F. L., Shyu, S. S., Lee, S. T., & Wong, T. B. (1999). Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method. Journal of Polymer Science Part B: Polymer Physics, 37(14), 1551–1564.

    Article  CAS  Google Scholar 

  • Mi, F. L., Sung, H. W., Shyu, S. S., Su, C. C., & Peng, C. K. (2003). Synthesis and characterization of biodegradable TPP/genipin co-crosslinked chitosan gel beads. Polymer, 44(21), 6521–6530.

    Article  CAS  Google Scholar 

  • Monier, M., Ayad, D. M., Wei, Y., & Sarhan, A. A. (2010). Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu (II) ions, Co (II) ions, and Ni (II) ions. Reactive and Functional Polymers, 70(4), 257–266.

    Article  CAS  Google Scholar 

  • Mubarak, A. A., El-Shazly, A. H., & Konsowa, A. H. (2004). Recovery of copper from industrial waste solution by cementation on reciprocating horizontal perforated zinc disc. Desalination, 167, 127–133.

    Article  CAS  Google Scholar 

  • Öğütveren, Ü. B., Koparal, S., & Özel, E. (1997). Electrodialysis for the removal of copper ions from wastewater. Journal of Environmental Science & Health Part A, 32(3), 749–761.

    Google Scholar 

  • Özcan, A., Öncü, E. M., & Özcan, A. S. (2006). Kinetics, isotherm and thermodynamic studies of adsorption of acid blue 193 from aqueous solutions onto natural sepiolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 277(1), 90–97.

    Article  Google Scholar 

  • Ozmen, M., Can, K., Arslan, G., Tor, A., Cengeloglu, Y., & Ersoz, M. (2010). Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles. Desalination, 254(1–3), 162–169.

    Article  CAS  Google Scholar 

  • Pan, B., Pan, B., Zhang, W., Lv, L., Zhang, Q., & Zheng, S. (2009). Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chemical Engineering Journal, 151(1), 19–29.

    Article  CAS  Google Scholar 

  • Rangsivek, R., & Jekel, M. R. (2005). Removal of dissolved metals by zero-valent iron (ZVI): Kinetics, equilibria, processes and implications for stormwater runoff treatment. Water Research, 39(17), 4153–4163.

    Article  CAS  Google Scholar 

  • Ren, Y. M., Wei, X. Z., & Zhang, M. L. (2008). Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent. Journal of Hazardous Materials, 158(1), 14–22.

    Article  CAS  Google Scholar 

  • Ren, Y., Abbood, H. A., He, F., Peng, H., & Huang, K. (2013). Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chemical Engineering Journal, 226, 300–311.

    Article  CAS  Google Scholar 

  • Repo, E., Warchol, J. K., Kurniawan, T. A., & Sillanpää, M. E. (2010). Adsorption of Co (II) and Ni (II) by EDTA-and/or DTPA-modified chitosan: kinetic and equilibrium modeling. Chemical Engineering Journal, 161(1), 73–82.

    Article  CAS  Google Scholar 

  • Robert, C. O., & Handley, O. (2000). Modern magnetic materials: principles and applications. New York: John Wiley and Sons.

    Google Scholar 

  • Shukla, S. R., Gaikar, V. G., Pai, R. S., & Suryavanshi, U. S. (2009). Batch and column adsorption of Cu (II) on unmodified and oxidized coir. Separation Science and Technology, 44(1), 40–62.

    Article  CAS  Google Scholar 

  • Sun, S., & Wang, A. (2006). Adsorption properties of carboxymethyl-chitosan and cross-linked carboxymethyl-chitosan resin with Cu (II) as template. Separation and Purification Technology, 49(3), 197–204.

    Article  CAS  Google Scholar 

  • Türkmen, D., Yılmaz, E., Öztürk, N., Akgöl, S., & Denizli, A. (2009). Poly (hydroxyethyl methacrylate) nanobeads containing imidazole groups for removal of Cu (II) ions. Materials Science and Engineering: C, 29(6), 2072–2078.

    Article  Google Scholar 

  • Wan Ngah, W. S., & Fatinathan, S. (2008). Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chemical Engineering Journal, 143(1–3), 62–72.

    Article  Google Scholar 

  • Wan Ngah, W. S., & Fatinathan, S. (2010). Adsorption characterization of Pb (II) and Cu (II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. Journal of Environmental Management, 91(4), 958–969.

    Article  Google Scholar 

  • Wan Ngah, W. S., Endud, C. S., & Mayanar, R. (2002). Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive and Functional Polymers, 50(2), 181–190.

    Article  Google Scholar 

  • Wang, S., Li, L., & Zhu, Z. H. (2007). Solid-state conversion of fly ash to effective adsorbents for Cu removal from wastewater. Journal of Hazardous Materials, 139(2), 254–259.

    Article  CAS  Google Scholar 

  • Wang, J., Zheng, S., Shao, Y., Liu, J., Xu, Z., & Zhu, D. (2010). Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. Journal of Colloid and Interface Science, 349(1), 293–299.

    Article  CAS  Google Scholar 

  • Wang, X. S., Zhu, L., & Lu, H. J. (2011). Surface chemical properties and adsorption of Cu(II) on nanoscale magnetite in aqueous solutions. Desalination, 276(1), 154–160.

    Article  CAS  Google Scholar 

  • Wu, F. C., Tseng, R. L., & Juang, R. S. (2010). A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. Journal of Environmental Management, 91(4), 798–806.

    Article  CAS  Google Scholar 

  • Yavuz, M., Gode, F., Pehlivan, E., Ozmert, S., & Sharma, Y. C. (2008). An economic removal of Cu2+ and Cr3+ on the new adsorbents: pumice and polyacrylonitrile/pumice composite. Chemical Engineering Journal, 137(3), 453–461.

    Article  CAS  Google Scholar 

  • Yin, P., Xu, Q., Qu, R., & Zhao, G. (2009). Removal of transition metal ions from aqueous solutions by adsorption onto a novel silica gel matrix composite adsorbent. Journal of Hazardous Materials, 169(1), 228–232.

    Article  CAS  Google Scholar 

  • Zhang, X., & Bai, R. (2003). Mechanisms and kinetics of humic acid adsorption onto chitosan-coated granules. Journal of Colloid and Interface Science, 264(1), 30–38.

    Article  CAS  Google Scholar 

  • Zhang, Y. X., Yu, X. Y., Jin, Z., Jia, Y., Xu, W. H., Luo, T., Zhu, B. J., Liu, J. H., & Huang, X. J. (2011). Ultra high adsorption capacity of fried egg jellyfish-like γ-AlOOH (Boehmite)@ SiO2/Fe3O4 porous magnetic microspheres for aqueous Pb (II) removal. Journal of Materials Chemistry, 21(41), 16550–16557.

    Article  CAS  Google Scholar 

  • Zhou, Y. T., Nie, H. L., Branford-White, C., He, Z. Y., & Zhu, L. M. (2009a). Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. Journal of Colloid and Interface Science, 330(1), 29–37.

    Article  CAS  Google Scholar 

  • Zhou, L. C., Li, Y. F., Bai, X., & Zhao, G. H. (2009b). Use of microorganisms immobilized on composite polyurethane foam to remove Cu (II) from aqueous solution. Journal of Hazardous Materials, 167(1), 1106–1113.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (Nos. 21367016, 51104073, 51408282), the Science Research Fund in Yunnan Province Department of Education (No.2015 J028), and Key Fund Project of Yunnan Provincial Department of Education (No.2015Z044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Li, K., Ning, P. et al. Removal of Cu(II) Ions from Aqueous Solution by Magnetic Chitosan-Tripolyphosphate Modified Silica-Coated Adsorbent: Characterization and Mechanisms. Water Air Soil Pollut 228, 302 (2017). https://doi.org/10.1007/s11270-017-3482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3482-6

Keywords

Navigation