Skip to main content

Advertisement

Log in

Cost-Effectiveness Analysis for Soil Heavy Metal Contamination Treatments

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Soil heavy metal contamination results in both huge economic loss and severe health problem. Many technologies, such as soil stabilization/solidification, soil excavation, soil washing, chemical extraction and phytoremediation, have been developed to treat soil heavy metal contamination. Among these methods, phytoremediation is usually regarded as a promising, environment-friendly, and cost-effective method. However, little information has been found to support this idea. Hence, in this study, we have conducted a cost-effectiveness analysis of three treatment methods (soil excavation and disposal, soil washing, and phytoextraction) in 16 scenarios of different soil texture, site scale, soil metal, and contamination levels with reviewed literature information. The results have showed that phytoextraction is more cost-effective when dealing with the slightly polluted soils, while soil washing is cost-effective for severely-contaminated scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.

    Article  CAS  Google Scholar 

  • Abumaizar, R. J., & Smith, E. H. (1999). Heavy metal contaminants removal by soil washing. Journal of Hazardous Materials, 70, 71–86.

    Article  CAS  Google Scholar 

  • Adak, T., Kumar, G., Chakravarty, N. V. K., et al. (2013). Biomass and biomass water use efficiency in oilseed crop (Brassica juncea L.) under semi-arid microenvironments. Biomass and Bioenergy, 51, 154–162.

    Article  CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91, 869.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In Heavy metals in soils (pp. 11–50). Springer.

  • Baker, A. J. M., Reeves, R. D., & Hajar, A. S. M. (1994). Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). The New Phytologist, 127, 61–68.

    Article  CAS  Google Scholar 

  • Bang, J., & Hesterberg, D. (2004). Dissolution of trace element contaminants from two coastal plain soils as affected by pH. Journal of Environmental Quality, 33, 891–901.

    Article  CAS  Google Scholar 

  • Basta, N. T., & Mcgowen, S. L. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution, 127, 73–82.

    Article  CAS  Google Scholar 

  • Begonia, G. B., Davis, C. D., Begonia, M. F. T., & Gray, C. N. (1998). Growth responses of Indian mustard [Brassica juncea (L.) Czern.] and its phytoextraction of lead from a contaminated soil. Bulletin of Environmental Contamination and Toxicology, 61, 38–43.

    Article  CAS  Google Scholar 

  • Brown, S. L., Chaney, R. L., Angle, J. S., & Baker, A. J. M. (1994). Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil. Journal of Environmental Quality, 23, 1151–1157.

    Article  CAS  Google Scholar 

  • Brown, S. L., Chaney, R. L., Angle, J. S., & Baker, A. J. (1995). Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils. Environmental Science & Technology, 29, 1581–1585.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Malik, M., Yin, M. L., et al. (1997). Phytoremediation of soil metals. Current Opinion in Biotechnology, 8, 279–284.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Li, Y. M. & Brown, S. L., et al (2000) Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. Phytoremediation Contam Soil Water Lewis Boca Raton FL 129–158.

  • Chaney, R. L., Angle, J. S., Broadhurst, C. L., et al. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality, 36, 1429–1443.

    Article  CAS  Google Scholar 

  • Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science, 2014, 243–254.

    Article  Google Scholar 

  • Clemente, R., Escolar, Á., & Bernal, M. P. (2006). Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials. Bioresource Technology, 97, 1894–1901.

    Article  CAS  Google Scholar 

  • Cunningham, S. D. (1997). Phytoremediation of contaminated water and soil. ACS Symposium Series, 664, 2–17.

    CAS  Google Scholar 

  • Cunningham, S. D., Berti, W. R., & Huang, J. W. (1995). Phytoremediation of contaminated soils. Trends in Biotechnology, 13, 393–397.

    Article  CAS  Google Scholar 

  • Dermont, G., Bergeron, M., Mercier, G., & Richer-Lafleche, M. (2008). Soil washing for metal removal: a review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152, 1–31.

    Article  CAS  Google Scholar 

  • Duong, T. T., & Lee, B.-K. (2011). Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management, 92, 554–562.

    Article  CAS  Google Scholar 

  • Ebbs, S. D., Lasat, M. M., Brady, D. J., et al. (1997). Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality, 26, 1424–1430.

    Article  CAS  Google Scholar 

  • Ellis, D., Frey, H., Markey, R. M., et al. (2002). Arsenic treatment technologies for soil, waste, and water. Washington DC: Environmental Protection Agency.

    Google Scholar 

  • Entry, J. A. (1997). Phytoremediation and reclamation of soils contaminated with radionuclides. In: ACS Symposium Series p 299–306.

  • EPA U (2000). Introduction to phytoremediation. EPA/600/R-99/107.

  • Epelde, L., Becerril, J. M., Kowalchuk, G. A., et al. (2010). Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities. Applied and Environmental Microbiology, 76, 7843–7853.

    Article  CAS  Google Scholar 

  • Feng, M.-H., Shan, X.-Q., Zhang, S., & Wen, B. (2005). A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl 2, and NaNO 3 extraction methods for prediction of bioavailability of metals in soil to barley. Environmental Pollution, 137, 231–240.

    Article  CAS  Google Scholar 

  • Fumagalli, P., Comolli, R., Ferre, C., et al. (2014). The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: a strategy to increase the benefits of soil phytoremediation. Journal of Environmental Management, 145, 35–42.

    Article  CAS  Google Scholar 

  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77, 229–236.

    Article  CAS  Google Scholar 

  • Ghosh, M., & Singh, S. (2005). A review on phytoremediation of heavy metals and utilization of it’s by products. Asian Journal on Energy & Environment, 6, 18.

    Google Scholar 

  • He Z, Shentu J, Yang X, et al. (2015) Heavy metal contamination of soils: sources, indicators and assessment. Journal of Environmental Indicators, 9, 17–18.

    Google Scholar 

  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167.

    Article  Google Scholar 

  • Karthika, N., Jananee, K., & Murugaiyan, V. (2016). Remediation of contaminated soil using soil washing-a review. J Eng Research and Application, 6, 13–18.

  • Keet, B. (2011). Proposed national environmental standard for assessing and managing contaminants in soil to protect human health discussion document. Environment Protection Association Inc..

  • Kelly, J., Thornton, I., & Simpson, P. R. (1996). Urban geochemistry: a study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Applied Geochemistry, 11, 363–370.

    Article  CAS  Google Scholar 

  • Kos, B., & Leštan, D. (2003). Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environmental Science & Technology, 37, 624–629.

    Article  CAS  Google Scholar 

  • Lambert, M., Leven, B. A., & Green, R. M. (2000). New methods of cleaning up heavy metal in soils and water. Environ Sci Technol Briefs Citiz Kans State Univ Manhattan KS.

  • Lasat, M. (2000). Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research, 2, 1–25.

    Google Scholar 

  • Li, Z., Ma, Z., Kuijp, T. J. V. D., et al. (2014). A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of The Total Environment, 468–469, 843–853.

    Article  Google Scholar 

  • Lim, J.-M., Salido, A. L., & Butcher, D. J. (2004). Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchemical Journal, 76, 3–9.

    Article  CAS  Google Scholar 

  • Liu, D., Jiang, W., Liu, C., et al. (2000). Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard [Brassica juncea (L.)]. Bioresource Technology, 71, 273–277.

    Article  CAS  Google Scholar 

  • Martínez-Alcalá, I., & Bernal, M. P. (2011). Interaction between the hyperaccumulator Thlaspi caerulescens and Lupinus albus or Brassica juncea for Zn accumulation in plants. Italy: Florence.

    Google Scholar 

  • Mohd, S. N., Majid, N. M., Shazili, N. A. M., & Abdu, A. (2013). Growth performance, biomass and phytoextraction efficiency of Acacia mangium and Melaleuca cajuputi in remediating heavy metal contaminated soil. American Journal of Environmental Sciences, 9, 310.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60, 193–207.

    Article  Google Scholar 

  • Ogundiran, M. B., & Osibanjo, O. (2009). Mobility and speciation of heavy metals in soils impacted by hazardous waste. Chemical Speciation and Bioavailability, 21, 59–69.

    Article  CAS  Google Scholar 

  • Park, J. H., Lamb, D., Paneerselvam, P., et al. (2011). Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. Journal of Hazardous Materials, 185, 549–574.

    Article  CAS  Google Scholar 

  • Phaenark, C., Pokethitiyook, P., Kruatrachue, M., & Ngernsansaruay, C. (2009). Cd and Zn accumulation in plants from the Padaeng zinc mine area. International Journal of Phytoremediation, 11, 479–495.

    Article  CAS  Google Scholar 

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees—a review. Environment International, 29, 529–540.

    Article  CAS  Google Scholar 

  • Qin, F., Shan, X., & Wei, B. (2004). Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere, 57, 253–263.

    Article  CAS  Google Scholar 

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181.

    Article  CAS  Google Scholar 

  • Robinson, B. H., Leblanc, M., Petit, D., et al. (1998). The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant and Soil, 203, 47–56.

    Article  CAS  Google Scholar 

  • Robinson, B. H., Anderson, C. W. N., & Dickinson, N. M. (2015). Phytoextraction: where’s the action? Journal of Geochemical Exploration, 151, 34–40.

    Article  CAS  Google Scholar 

  • Ross, S. M., Wood, M. D. & Copplestone, D., et al (2007). Environmental concentrations of heavy metals in UK soil and herbage. UK Soil Herb Pollut Surv UKSHS Rep No 7:

  • Salido, A. L., Hasty, K. L., Lim, J.-M., & Butcher, D. J. (2003). Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). International Journal of Phytoremediation, 5, 89–103.

    Article  CAS  Google Scholar 

  • Schettini AT, Leite MG, Messias MCT, et al (2017) Exploring Al, Mn and Fe phytoextraction in 27 ferruginous rocky outcrops plant species. Flora.

    Google Scholar 

  • Schnoor JL (1997) Phytoremediation. GWRTAC.

    Google Scholar 

  • Shah, F. U. R., Ahmad, N., Masood, K. R., et al. (2010). Heavy metal toxicity in plants. In Plant adaptation and phytoremediation (pp. 71–97). Springer.

  • Sharma, H. D. & Reddy, K. R., et al. (2004) Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. Wiley.

  • Shen, Z. G., Zhao, F. J., & McGrath, S. P. (1997). Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant, Cell & Environment, 20, 898–906.

    Article  CAS  Google Scholar 

  • Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: an overview. Indian Journal of Pharmacology, 43, 246.

    Article  CAS  Google Scholar 

  • Tang, J. & Sun, Q. (2010). Management on the bioremediation of petroleum contaminated soil and its cost analysis. Environmental Science & Management, 125–129.

  • Tangahu, B. .V, Sheikh Abdullah, S. R. & Basri, H., et al (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering 2011:

  • Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016a). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309.

    Article  Google Scholar 

  • Tóth, G., Hermann, T., Szatmári, G., & Pásztor, L. (2016b). Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Science of The Total Environment, 565, 1054–1062.

    Article  Google Scholar 

  • van Soesbergen, A. J. J., Brouwer, R. & Baan, P., et al (2008) Assessing the cost-effectiveness of pollution abatement measures in agriculture, industry and the wastewater treatment sector.

  • Vodyanitskii, Y. N. (2016). Standards for the contents of heavy metals in soils of some states. Annals of Agrarian Science, 14, 257–263.

    Article  Google Scholar 

  • Wang, A. S., Angle, J. S., Chaney, R. L., et al. (2006). Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant and Soil, 281, 325–337.

    Article  CAS  Google Scholar 

  • Whiting, S. N., de Souza, M. P., & Terry, N. (2001). Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environmental Science & Technology, 35, 3144–3150.

    Article  CAS  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology, 2011.

  • Yao, Z., Li, J., Xie, H., & Yu, C. (2012). Review on remediation technologies of soil contaminated by heavy metals. Procedia Environmental Sciences, 16, 722–729.

    Article  CAS  Google Scholar 

  • Zeng, F., Ali, S., Zhang, H., et al. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159, 84–91.

    Article  CAS  Google Scholar 

  • Zhang, X. Y., Lin, F. F., Wong, M. T., et al. (2009). Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China. Environmental Monitoring and Assessment, 154, 439–449.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Lombi, E., & McGrath, S. P. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249, 37–43.

    Article  CAS  Google Scholar 

  • Zhu, J., Yu, L., Huang, Q., et al. (2013). Application of rotation system of brassica Juncea and Elsholtzia Splendens to remediate copper and cadmi-um-contaminated soil: a field trial [J]. Journal of Agro-Environment Science, 6, 014.

    Google Scholar 

  • Zhu, G., Guo, Q., Yang, J., et al. (2015). Washing out heavy metals from contaminated soils from an iron and steel smelting site. Frontiers of Environmental Science & Engineering, 9, 634–641.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixiao Li.

Additional information

Highlights:

1. A cost-effectiveness analysis for soil heavy metal treatments was conducted.

2. Phytoremediation, such as phytoextraction, is cost-effective in lightly contaminated soil compared to other physicochemical methods.

3. The idea of combined treatment of both physicochemical technologies and phytoremediation was proposed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Li, H. Cost-Effectiveness Analysis for Soil Heavy Metal Contamination Treatments. Water Air Soil Pollut 229, 126 (2018). https://doi.org/10.1007/s11270-018-3784-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3784-3

Keywords

Navigation