Skip to main content
Log in

Transient Analysis of Contaminant Diffusion in the Wellbore of Shale Gas Horizontal Wells

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study focuses on the transient analysis of diffusion of a contaminant ejected by an external source into a laminar flow of recovered water. The influence of density variation with contaminant concentration is approximated according to the Boussinesq approximation. On the basis of momentum conservation and mass conservation theory, recovered water flow and mass transfer partial differential equations (PDEs) describing contaminant diffusion are obtained. This problem under three kinds of boundary conditions is solved analytically using Laplace transform method. By comparing the actual measured concentration in horizontal well of X shale gas reservoir and the concentration obtained from the models, the type of boundary conditions of X shale gas reservoir is determined. After that, sensitivity analysis of the influence of each parameter on the concentration of contaminant is presented. The determination of boundary condition type can determine the fracture form, which provides the basis for the flow and diffusion of the fluid in the fracture. The model also can be quite useful for available necessary early warning methods for detecting or predicting contaminant concentration and hence help mitigate related environmental pollution by earlier instituting relevant decontamination measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbasi, M., Dehghanpour, H., and Hawkes, R. V. (2012). Flowback Analysis for Fracture Characterization. Presented at the SPE Canadian Unconventional Resources Conference, Calgary, 30 October–1 November. https://doi.org/10.2118/162661-MS.

  • Barree, R. D. and Mukherjee, H. (1995). Engineering criteria for fracture flow back procedures [P].SPE29600.

  • Bergmann, A., Weber, F. A., Meiners, H. G., & Müller, F. (2014). Potential water-related environmental risks of hydraulic fracturing employed in exploration and exploitation of unconventional natural gas reservoirs in Germany. Environmental Sciences Europe, 26(1), 1.

    Article  CAS  Google Scholar 

  • Butkovskyi, A., Bruning, H., Kools, S. A., et al. (2017). Organic pollutants in shale gas flowback and produced waters: identification, potential ecological impact and implications for treatment strategies. Environmental Science & Technology, 51(9):4740−4754.

  • Camarillo, M. K., Domen, J. K., & Stringfellow, W. T. (2016). Physical chemical evaluation of hydraulic fracturing chemicals in the context of produced water treatment. Journal of Environmental Management, 183(Part 1), 164–−174.

    Article  CAS  Google Scholar 

  • Cheng, Y. (2012). Impact of water dynamics in fractures on the performance of hydraulically fractured wells in gas shale reservoirs [J]. Journal of Canadian Petroleum Technology, 51(2), 143–151.

    Article  CAS  Google Scholar 

  • Chinyoka, T., & Makinde, O. D. (2010). Analysis of nonlinear dispersion of a pollutant ejected by an external source into a channel flow. Mathematical Problems in Engineering, 2010(4), 242–256.

    Google Scholar 

  • Chinyoka, T., & Makinde, O. D. (2013). Viscoelastic modeling of the diffusion of polymeric pollutants injected into a pipe flow. Acta Mechanica Sinica, 29(2), 166–178.

    Article  CAS  Google Scholar 

  • Ely, J. W., Arnold, W. T. and Holditeh, S. A. (1990). New techniques and quality control find success in enhancing productivity and minimizing proppant flow back [P]. SPE20708.

  • EPA (2016). Hydraulic fracturing for oil and gas: impacts from the hydraulic fracturing water cycle on drinking water resources in the United States (Final Report).

  • Ferrer, I., & Thurman, E. M. (2015). Chemical constituents and analytical approaches for hydraulic fracturing waters. Trends in Environmental Analytical Chemistry, 5, 18–25.

    Article  CAS  Google Scholar 

  • Finkel, M. L., & Hays, J. (2013). The implications of unconventional drilling for natural gas: a global public health concern. Public Health, 127(10), 889−893.

    Article  Google Scholar 

  • Gorder, R. A. V., & Vajravelu, K. (2011). Nonlinear dispersion of a pollutant ejected into a channel flow [J]. Open Physics, 9(5), 1182–1194.

    Article  CAS  Google Scholar 

  • Gregory, K. B., Vidic, R. D., & Dzombak, D. A. (2011). Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements, 7(3), 181–186.

    Article  Google Scholar 

  • Hayes, T. D. (2009). Sampling and analysis of water streams associated with the development of Marcellus shale gas. Des Plaines: Gas Technology Institute.

    Google Scholar 

  • Howarth, R. W., Ingraffea, A., & Engelder, T. (2011). Natural gas: should fracking stop? Nature, 477(7364), 271–273.

    Article  CAS  Google Scholar 

  • Hu, Y., & Mackay, E. (2017). Modelling of geochemical reactions occurring in the Gyda field under cold-seawater injection on the basis of produced-water-chemistry data and implications for scale management. SPE Production & Operations, 32(4), 449–468.

    Article  CAS  Google Scholar 

  • Hu, Y., Mackay, E., & Ishkov, O. (2016). Predicted and observed evolution of produced brine compositions, and implications for scale management. SPE Production & Operations, 31(3), 270–279.

    Article  CAS  Google Scholar 

  • Hu, Y., Mackay, E., Vazquez, O., & Ishkov, O. (2018). Streamline simulation of barium sulfate precipitation occurring within the reservoir coupled with analyses of observed produced water chemistry data to aid scale management. SPE Production & Operation, 33(1). https://doi.org/10.2118/174235-PA.

  • King, G. E. (2012) Hydraulic fracturing 101: What every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor and engineer should know about estimating Frac risk and improving Frac performance in unconventional gas and oil wells[C]//Society of Petroleum Engineers.

  • Lan, Q., Ghanbari, E., Dehghanpour, H., et al. (2015). Water loss versus soaking time: spontaneous imbibition in tight rocks. Energy Technology, 2(12), 1033–1039.

    Article  Google Scholar 

  • Li, L., & Yin, Z. (2017). Numerical simulation of groundwater pollution problems based on convection diffusion equation. American Journal of Computational Mathematics, 07(3), 350–370.

    Article  Google Scholar 

  • Makinde, O. D., & Chinyoka, T. (2010). Transient analysis of pollutant dispersion in a cylindrical pipe with a nonlinear waste discharge concentration. Computers & Mathematics with Applications, 60(3), 642–652.

    Article  Google Scholar 

  • Moitsheki, R. J., & Makinde, O. D. (2009). Symmetry reductions and solutions for pollutant diffusion in a cylindrical system [J]. Nonlinear Analysis Real World Applications, 10(6), 3420–3427.

    Article  CAS  Google Scholar 

  • Nicot, J. P., & Scanlon, B. R. (2012). Water use for shale-gas production in Texas, U.S. Environmental Science & Technology, 46(6), 3580–3586.

    Article  CAS  Google Scholar 

  • Pakulska, D. (2015). Chemical hazards arising from shale gas extraction. Medycyna Pracy, 66(1), 99–117.

    Google Scholar 

  • Park, I., Seo, I. W., Kim, Y. D., et al. (2016). Flow and dispersion analysis of shallow water problems with Froude number variation. Environmental Earth Sciences, 75(2), 1–12.

    Article  Google Scholar 

  • Rahm, B. G., & Riha, S. J. (2014). Evolving shale gas management: water resource risks, impacts, and lessons learned. Environmental Sciences: Processes and Impacts, 16(6), 1400–1412.

    CAS  Google Scholar 

  • Shih, J. S., Saiers, J. E., Anisfeld, S. C., Chu, Z., Muehlenbachs, L. A., & Olmstead, S. M. (2015). Characterization and analysis of liquid waste from Marcellus shale gas development. Environmental Science & Technology, 49(16), 9557–9565.

    Article  CAS  Google Scholar 

  • Shukla, V. P. (2002). Analytical solutions for unsteady transport dispersion of nonconservative pollutant with time-dependent periodic waste discharge concentration [J]. Journal of Hydraulic Engineering, 128(9), 866–869.

    Article  Google Scholar 

  • Singh, M. K. (2012). Analytical solution for one-dimensional solute dispersion with time-dependent source concentration along uniform groundwater flow in a homogeneous porous formation. Journal of Engineering Mechanics, 138(8), 1045–1056.

    Article  Google Scholar 

  • Small, M. J., Stern, P. C., et al. (2014). Risks and risk governance in unconventional shale gas development. Environmental Science & Technology, 48(15), 8289–−8297.

    Article  CAS  Google Scholar 

  • Stringfellow, W. T., Domen, J. K., Camarillo, M. K., Sandelin, W. L., & Borglin, S. (2014). Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing. Journal of Hazardous Materials, 275, 37−54.

    Article  CAS  Google Scholar 

  • Taylor, G. (1954). The dispersion of matter in turbulent flow through a pipe [J]. Proceedings of the Royal Society of London, 223(1155), 446–468.

    Article  CAS  Google Scholar 

  • Vanzo, D., Siviglia, A., & Toro, E. F. (2016). Pollutant transport by shallow water equations on unstructured meshes: hyperbolization of the model and numerical solution via a novel flux splitting scheme. Journal of Computational Physics, 321, 1–20.

    Article  CAS  Google Scholar 

  • Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H., & Kondash, A. (2014). A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environmental Science & Technology, 48(15), 8334–8348.

    Article  CAS  Google Scholar 

  • Wang, F., Pan, Z., & Zhang, S. (2017). Impact of chemical osmosis on water leakoff and flowback behavior from hydraulically fractured gas shale. Journal of Petroleum Science & Engineering, 151, 264−274.

  • Yost, E. E., Stanek, J., Dewoskin, R. S., & Burgoon, L. D. (2016). Overview of chronic oral toxicity values for chemicals present in hydraulic fracturing fluids, flowback, and produced waters. Environmental Science & Technology, 50(9), 4788−4797.

    Article  CAS  Google Scholar 

  • Ziemkiewicz, P. F., Quaranta, J. D., Darnell, A., & Wise, R. (2014). Exposure pathways related to shale gas development and procedures for reducing environmental and public risk. Journal of Natural Gas Science and Engineering, 16, 77−84.

    Article  Google Scholar 

Download references

Funding

This project is supported by the National Science Fund-Tianyuan Mathematical Fund (No. 11526173) and applied fundamental research (major frontier projects) of Sichuan Province (No. 16JC0314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-xu Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Zb., Dong, Xx. & Min, C. Transient Analysis of Contaminant Diffusion in the Wellbore of Shale Gas Horizontal Wells. Water Air Soil Pollut 229, 221 (2018). https://doi.org/10.1007/s11270-018-3870-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3870-6

Keywords

Navigation