Skip to main content
Log in

Multivariate Optimization of Binary Solvent Microextraction for the Simultaneous Determination of Endocrine Disruptive Phenolic Compounds and Organochlorine Pesticides in Wastewater and Sludge Samples by GC-MS

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study presents the development of a sensitive and accurate dispersive liquid-liquid microextraction method using binary solvents for the simultaneous determination of endocrine disruptive compounds by GC-MS. Optimum binary solvent and dispersive solvent amounts were determined using an experimental design. The main effects of these parameters and their interaction effects were assessed using analysis of variance. The detection limits of the analytes under optimal experimental conditions ranged between 0.16–1.5 ng/mL. All analytes exhibited good linearity over broad calibration ranges, and high precision (%RSD < 8.0%) was obtained for six repeated readings of the lowest concentrations of the calibration plots. The method’s applicability and accuracy were tested on two municipal wastewater samples spiked at 10, 50, and 100 ng/mL. The recovery results obtained ranged between 82 and 108%, indicating that the method can be used to quantify the analytes in wastewater matrix with substantial accuracy. In addition, matrix matching calibration method was used to improve the percent recovery (≈ 100%) for a waste sludge sample spiked at 50 ng/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2, 1–12.

    Article  Google Scholar 

  • Bulgurcuoğlu, A. E., Yılmaz, B., Chormey, D. S., & Bakırdere, S. (2018). Simultaneous determination of estrone and selected pesticides in water medium by GC-MS after multivariate optimization of microextraction strategy. Environmental Monitoring and Assessment, 190(4), 252.

    Article  Google Scholar 

  • Chen, M.-L., Chen, J.-H., Ding, L., Xu, Z., Wen, L., Wang, L.-B., & Cheng, Y.-H. (2017). Study of the detection of bisphenol A based on a nano-sized metal-organic framework crystal and an aptamer. Analytical Methods, 9, 906–909.

    Article  CAS  Google Scholar 

  • Correia-Sá, L., Norberto, S., Delerue-Matos, C., Calhau, C., & Domingues, V. F. (2018). Micro-QuEChERS extraction coupled to GC–MS for a fast determination of bisphenol a in human urine. Journal of Chromatography B, 1072, 9–16.

    Article  Google Scholar 

  • Estevão, P. L. S., Peralta-Zamora, P., & Nagata, N. (2018). Binary solvent dispersive liquid-liquid microextraction for the determination of pesticides in natural water samples. Journal of the Brazilian Chemical Society, 29, 2104–2116.

    Google Scholar 

  • Fortes, S. S., Barth, T., Furtado, N. A. J. C., Pupo, M. T., de Gaitani, C. M., & de Oliveira, A. R. M. (2013). Evaluation of dispersive liquid–liquid microextraction in the stereoselective determination of cetirizine following the fungal biotransformation of hydroxyzine and analysis by capillary electrophoresis. Talanta, 116, 743–752.

    Article  CAS  Google Scholar 

  • Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., van de Zee, S. E. A. T. M., & Ritsema, C. J. (2015). Emerging pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research, 3, 57–65.

    Article  Google Scholar 

  • Genuis, S. J., Beesoon, S., Birkholz, D., & Lobo, R. A. (2012). Human excretion of bisphenol a: blood, urine, and sweat (BUS) study. Journal of Environmental and Public Health, 2012, 10.

    Google Scholar 

  • George, M. J., Tagwa, O. R., & Sichilongo, K. F. (2017). Extraction and pre-concentration of phthalic acid esters from aqueous solutions using agitation-assisted dispersed binary solvents microextraction. South African Journal of Chemistry, 70, 100–107.

    CAS  Google Scholar 

  • Gondo, T. T., Obuseng, V. C., Mmualefe, L. C., & Okatch, H. (2016). Employing solid phase microextraction as extraction tool for pesticide residues in traditional medicinal plants. Journal of Analytical Methods in Chemistry, 2016, 2890219.

    Article  Google Scholar 

  • Jarman, W. M., & Ballschmiter, K. (2012). From coal to DDT: the history of the development of the pesticide DDT from synthetic dyes till Silent Spring. Endeavour, 36, 131–142.

    Article  Google Scholar 

  • Jayaraj, R., Megha, P., & Sreedev, P. (2016). Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology, 9, 90–100.

    Article  CAS  Google Scholar 

  • Kelly, B. C., Ikonomou, M. G., Blair, J. D., Morin, A. E., & Gobas, F. A. (2007). Food web-specific biomagnification of persistent organic pollutants. Science, 317, 236–239.

    Article  CAS  Google Scholar 

  • Kwon, H., Lehotay, S. J., & Geis-Asteggiante, L. (2012). Variability of matrix effects in liquid and gas chromatography–mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops. Journal of Chromatography. A, 1270, 235–245.

    Article  CAS  Google Scholar 

  • Lee, Y. M., Kim, K. S., Jacobs, D. R., & Lee, D. H. (2017). Persistent organic pollutants in adipose tissue should be considered in obesity research. Obesity Reviews, 18, 129–139.

    Article  Google Scholar 

  • Li, Y., Zhang, W., Wang, R.-G., Wang, P.-L., & Su, X.-O. (2015). Development of a efficient and sensitive dispersive liquid–liquid microextraction technique for extraction and preconcentration of 10 β(2)-agonists in animal urine. PLoS One, 10(9), e0137194.

    Article  Google Scholar 

  • Lynch, K. L. (2017). Chapter 6 - toxicology: liquid chromatography mass spectrometry. In H. Nair & W. Clarke (Eds.), Mass spectrometry for the clinical laboratory (pp. 109–130). San Diego: Academic.

    Chapter  Google Scholar 

  • Maham, M., Karami-Osboo, R., Kiarostami, V., & Waqif-Husain, S. (2013). Novel binary solvents-dispersive liquid-liquid microextraction (BS-DLLME) method for determination of patulin in apple juice using high-performance liquid chromatography. Food Analytical Methods, 6, 761–766.

    Article  Google Scholar 

  • Motomizu, S., & Sakai, T. (2008). Chapter 7 - on-line sample pretreatment: extraction and Preconcentration. In S. D. Kolev & I. D. McKelvie (Eds.), Comprehensive Analytical Chemistry (Vol. 54, pp. 159–201). Amsterdam: Elsevier.

    Google Scholar 

  • Pleština, R. (2003). Pesticides and herbicides – types of pesticide. In L. Trugo & P. M. Finglas (Eds.), Encyclopedia of Food Sciences and Nutrition (pp. 4473–4483). Oxford: Academic.

    Chapter  Google Scholar 

  • Pojana, G., Gomiero, A., Jonkers, N., & Marcomini, A. (2007). Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environment International, 33, 929–936.

    Article  CAS  Google Scholar 

  • Priac, A., Morin-Crini, N., Druart, C., Gavoille, S., Bradu, C., Lagarrigue, C., Torri, G., Winterton, P., & Crini, G. (2017). Alkylphenol and alkylphenol polyethoxylates in water and wastewater: a review of options for their elimination. Arabian Journal of Chemistry, 10, S3749–S3773.

    Article  CAS  Google Scholar 

  • Rezaee, M., Assadi, Y., Milani Hosseini, M.-R., Aghaee, E., Ahmadi, F., & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 1116, 1–9.

    Article  CAS  Google Scholar 

  • Salgueiro-González, N., Muniategui-Lorenzo, S., López-Mahía, P., & Prada-Rodríguez, D. (2017). Trends in analytical methodologies for the determination of alkylphenols and bisphenol A in water samples. Analytica Chimica Acta, 962, 1–14.

    Article  Google Scholar 

  • Schug, T. T., Janesick, A., Blumberg, B., & Heindel, J. J. (2011). Endocrine disrupting chemicals and disease susceptibility. The Journal of Steroid Biochemistry and Molecular Biology, 127, 204–215.

    Article  CAS  Google Scholar 

  • Sung, Y.-H., Liu, C.-H., Leong, M.-I., & Huang, S.-D. (2014). Determination of alkylphenols in water by dispersive liquid–liquid microextraction based on solid formation without a disperser. Analytical Letters, 47(16), 2643–2654.

    Article  CAS  Google Scholar 

  • Willingham, E. (2004). Endocrine-disrupting compounds and mixtures: unexpected dose–response. Archives of Environmental Contamination and Toxicology, 46(2), 265–269.

    CAS  Google Scholar 

  • Yang, X., Chen, X., Hu, S., & Bai, X.-h. (2018). In-syringe binary-solvent liquid-phase microextraction for the preconcentration of cinnamic acid derivatives in traditional Chinese medicine samples. Chromatographia 2018, 81, 257–264.

    CAS  Google Scholar 

  • Zhu, J., Wang, Q., Li, M., Ren, L., Zheng, B., & Zou, X. (2018). Binary mixed solvent-based solvent demulsification-dispersive liquid-liquid microextraction coupled with gas chromatography-tandem mass spectrometry in determination of polycyclic aromatic hydrocarbons in water samples. Analytical Methods, 9, 1855–1863.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dotse Selali Chormey or Sezgin Bakırdere.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chormey, D.S., Fırat, M. & Bakırdere, S. Multivariate Optimization of Binary Solvent Microextraction for the Simultaneous Determination of Endocrine Disruptive Phenolic Compounds and Organochlorine Pesticides in Wastewater and Sludge Samples by GC-MS. Water Air Soil Pollut 229, 370 (2018). https://doi.org/10.1007/s11270-018-4024-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-4024-6

Keywords

Navigation