Skip to main content

Advertisement

Log in

Combining ALOS/PALSAR derived vegetation structure and inundation patterns to characterize major vegetation types in the Mamirauá Sustainable Development Reserve, Central Amazon floodplain, Brazil

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Remote sensing studies of vegetation cover and hydrologic dynamics in Amazonian wetlands have been mostly limited temporally or spatially, and the distribution and spatial configuration of Amazonian várzea habitats remains poorly known. This study uses multitemporal PALSAR L-band radar imagery combined with object-based image analysis, data mining techniques and field data to derive vegetation structure and inundation patterns and characterize major vegetation types in várzea forests of the Mamirauá Sustainable Development Reserve. Our results show that the combination of vegetation cover and inundation extent information can be a good indicator of the complex gradient of habitats along the floodplain. The intersection between vegetation and flood duration classes showed a wider range of combinations than suggested from field based studies. Chavascal areas—chacaracterized as a dense and species-poor shrub/tree community developing in old depressions, abandoned channels, and shallow lakes—had shorter inundation periods than the usually recognized hydroperiod of 180–240 days of flooding, while low várzea—a diverse community that have fewest and smallest species, and highest individual density and that tolerate 120–180 days of flooding every year—was distributed between flood duration ranges that were higher than reported by the literature. Forest communities growing at sites that were never mapped as flooded could indicate areas that only flood during extreme hydrological events, for short periods of time. Our results emphasize the potential contribution of SAR remote sensing to the monitoring and management of wetland environments, providing not only accurate information on spatial landscape configuration and vegetation distribution, but also important insights on the ecohydrological processes that ultimately determine the distribution of complex floodplain habitat mosaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Affonso AG, Arraut EM, Renó VF, Leão JAD, Hess, LL, Queiroz HL, Novo EMLM (2011) Estudo da dinâmica de inundação na várzea Amazônica através de termo-sensores de campo. Anais XV Simpósio Brasileiro de Sensoriamento Remoto, pp 5092–5099, ISBN: 978-85-17-00057-7

  • Alsdorf D, Bates P, Melack J et al (2007) Spatial and temporal complexity of the Amazon flood measured from space. Geophys Res Lett 34:L08402

    Google Scholar 

  • Arnesen AS, Silva TSF, Hess LL, Novo EMLM, Rudorff CM, Chapman BD, McDonald KC (2013) Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images. Remote Sens Environ, 130, pp 51–61. http://linkinghub.elsevier.com/retrieve/pii/S0034425712004257. Accessed 30 May 2013

  • Ashcroft MB, Chisholm LA, French KO (2009) Climate change at the landscape scale: predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Glob Chang Biol 15:656–667

    Article  Google Scholar 

  • Ayres JM (1993) As matas de várzea do Mamirauá. In: Sociedade Civil Mamirauá (ed) Estudos de Mamirauá. MCT/CNPq, Brasília, pp 1–123

    Google Scholar 

  • Beja P, Santos CD, Santana J, Pereira MJ, Marques JT, Queiroz HL, Palmeirim JM (2010) Seasonal patterns of spatial variation in understory bird assemblages across a mosaic of flooded and unflooded Amazonian forests. Biodivers Conserv 19(1):129–152

    Article  Google Scholar 

  • Benz U, Hoffmann P, Willhauck G et al (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens 58:239–258

    Article  Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65:2–16

    Article  Google Scholar 

  • Bonnet MP, Barroux G, Martinez JM, Syler F, Moreira-Turcq P, Cochonneau G, Melack JM, Boaventura G, Maurice-Bourgoin L, León JG, Roux JG, Calmante S, Kosuth P, Guyot JL, Seyler P (2008) Floodplain hydrology in na Amazon lake (Lago Grande de Curuaí). J Hydrol 349(1–2):18–30

    Article  Google Scholar 

  • Botero-Arias R, Marmontel M, Queiroz HL (2010) Projeto de manejo experimental de jacarés no Estado do Amazonas: abate de jacarés no setor Jarauá – Reserva de Desenvolvimento Sustentável Mamirauá, Dezembro de 2008. Uakari 5(2):49–57

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Congalton R (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46

    Article  Google Scholar 

  • Costa MPF (2004) Use of SAR satellites for mapping zonation of vegetation communities in the Amazon floodplain. ISPRS J Photogramm Remote Sens 25(10):1817–1835

    Google Scholar 

  • Costa MPF (2005) Estimate of net primary productivity of aquatic vegetation of the Amazon floodplain using Radarsat and JERS-1. Int J Remote Sens 26(20):4527–4536

    Article  Google Scholar 

  • Costa MPF, Silva TSF, Evans TL (2013) Wetland classification. In: Wang G, Weng Q (eds) Remote Sensing of Natural Resources. CRC Press, Boca Raton-FL, pp 461–478

    Chapter  Google Scholar 

  • Definiens (2009) Definiens developer 8: User guide. The Imaging Intelligence Company, Munich

    Google Scholar 

  • Ducke A, Black GA (1953) Phytogeographical notes on the Brazilian Amazon. Anais Acad Brasil Ciênc 25:1–46

    Google Scholar 

  • Ferreira RD, Leão JAD, Silva TSF, Rennó CD, Novo EMLM, Barbosa CCF (2013) Atualização e correção do delineamento de áreas alagáveis da bacia Amazônica. Anais do XVI Simpósio Brasileiro de Sensoriamento Remoto, pp 5864–5871, ISBN: 978-85-17-00065-2

  • Forsberg BR, Castro JGD, Cargnin-Ferreira E, Rosenqvist A (2001) The structure and function of the Negro River Ecosystem: Insights from the Jau Project, In: Cgão NL, Petry P, Prang P, Sonneschein L, Tlusty M (eds.). Conservation and Management of Ornamental Fish Resources of the Rio Negro Basin. Projeto Piaba, Amazonia, pp 125–144

  • Hamilton SK, Kellndorfer J, Lehner B, Tobler M (2007) Remote sensing of floodplain as a surrogate for biodiversity in a tropical river system (Madre de Dios, Peru). Geomorphol 89:23–38

    Article  Google Scholar 

  • Hawes JE, Peres CA, Riley LB, Hess LL (2012) Landscape-scale variation in structure and biomass of Amazonian seasonally flooded and unflooded forests. For Ecol Manag 281:163–176

    Article  Google Scholar 

  • Henderson F, Lewis A (2008) Radar detection of wetland ecosystems: a review. Int J Remote Sens 29:5809–5835

    Article  Google Scholar 

  • Hess LL, Melack JM, Filoso S, Wang Y (1995) Delineation of inundated área and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Trans Geosci Remote Sens 33:896–904

    Article  Google Scholar 

  • Hess LL, Melack JM, Novo EMLM, Barbosa CCF, Gastil M (2003) Dual-season mapping of wetland inundation and vegetation for the Central Amazon Basin. Remote Sens Environ 87:404–428

    Article  Google Scholar 

  • Hess LL, Affonso AG, Arraut EM, Novo EMLM, Gielow R, Renó V, Barbarisi B and Marioni B (2011) Evaluation of low-cost tree-mounted temperature loggers for validation of satellite-based flood mapping on the Amazon floodplain. Anais XV Simpósio Brasileiro de Sensoriamento Remoto, pp 5278–5283, ISBN: 978-85-17-00057-7

  • Hueck K (1966) Die Wälder Südamerikas. Gustav Fischer Verlag, Stuttgart, p 422

    Google Scholar 

  • IDSM. Banco de dados fluviométrico da Reserva de Desenvolvimento Sustentável Mamirauá. http://www.mamiraua.org.br/fluviometrico. Accessed 8 Mar 2013

  • Irion G, Junk WJ, Mello JA (1997) The large central Amazonian river floodplains near Manaus: geological, climatological, hydrological an geomorphological aspects. In: Junk WJ (ed) Ecological studies, vol 126., The Central Amazon floodplain: ecology of a pulsating systemSpringer-Verlag, Berlin, pp 23–46

    Google Scholar 

  • Japan Space Systems (2012) PALSAR User’s Guide, 69 p. http://gds.palsar.ersdac.jspacesystems.or.jp/e/guide/pdf/U_Guide_en.pdf. Accessed 29 Oct 2013

  • Junk WJ (1989) Flood tolerance and tree distribution in central Amazonian floodplains. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic Press, London, pp 47–64

    Chapter  Google Scholar 

  • Junk WJ (1997) The Central Amazon floodplain: ecology of a pulsing system. Ecological studies, vol 126. Springer-Verlag, Berlin

    Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain-systems. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J, Cohn-Haft M, Adeney JM, Wittmann F (2011) A classification of major naturally occurring Amazonian lowland wetlands. Wetlands 31:623–640

    Article  Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J, Wittmann F (2012) A classification of major natural habitats of Amazonian white-water river floodplains (várzeas). Wetl Ecol Manag, 20(6):461–475. http://link.springer.com/10.1007/s11273-012-9268-0. Accessed 8 Aug 2013

  • Kasischke ES, Melack JM, Dobson MC (1997) The use of imaging radars for ecological applications: a review. Remote Sens Environ 596:141–156

    Article  Google Scholar 

  • Lesack LFW, Melack JM (1995) Flooding hydrology and mixture dynamics of lake water derived from multiple sources in an Amazon floodplain lake. Water Resour 31:329–346

    Article  Google Scholar 

  • Liaw A, Wierner M (2002) Classification and regression by random: forest. RNews 2(3):18–22

    Google Scholar 

  • Lima DS, Marmontel M, Bernard E (2012) Site and refuge use by giant river otters (Pteronura brasiliensis) in the Western Brazilian Amazonia. J Nat Hist 46(11–12):729–739

    Article  Google Scholar 

  • Lindenmayer DB, Hobbs RJ, Montague-Drake R et al (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11:78–91. doi:10.1111/j.1461-0248.2007.01114.x

    PubMed  Google Scholar 

  • Malhi Y, Betts RA, Roberts JT et al (2008) Climate change, deforestation, and the fate of the Amazon. Science 319:169–172

    Article  CAS  PubMed  Google Scholar 

  • Martinez J, Letoan T (2007) Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sens Environ 108(3):209–223. http://linkinghub.elsevier.com/retrieve/pii/S0034425706004585. Accessed 9 Aug 2013

  • Melack JM, Coe MT (2013) Climate change and the floodplain lakes of the Amazon basin. In: Goldman CR, Kumagai M, Robarts R (eds) Climate change and inland waters: impacts and mitigation for ecosystems and societies. Wiley, New York

    Google Scholar 

  • Melack JM, Hess LL (2010) Remote sensing of the distribution and extent of wetlands in the Amazon basin. In: Junk WJ, Piedade MTF, Wittman F, Schöngart J, Parolin P (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Melack JM, Novo EMLM, Forsberg BR, Piedade MTF, Maurice L (2009) Floodplain ecosystem processes. In: Keller M, Bustamante M, Gash J, Dias PJ (eds) Amazonia and global change, vol 186., Geophysical monographs seriesAmerican Geophysical Union, Washington DC, pp 525–541

    Chapter  Google Scholar 

  • Mertes LAK, Daniel DL, Melack JM, Nelson B, Martinelli A, Forsberg BR (1995) Spatial patterns of hydrology, geomorphology, and vegetation on the floodplain of the Amazon River in Brazil from a remote sensing perspective. Geomorphol 13:215–232

    Article  Google Scholar 

  • Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetl Ecol Manag 10:381–402

    Article  Google Scholar 

  • Paim FP, Sousa J Jr, Valsecchi J, Harada ML, Queiroz HL (2013) Diversity, geographic distribution and conservation of squirrel monkeys, Saimiri (Primates, Cebidae), in the floodplain forests of Central Amazon. Int J Primatol 34(5):1055–1076

    Article  Google Scholar 

  • Parolin P, Lucas C, Piedade MTF, Wittmann F (2010) Drought responses of extremely flood tolerant trees of Amazonian floodplains. Annal Bot 105(1):129–139

    Article  Google Scholar 

  • Peixoto JMA, Nelson B, Wittmann F (2009) Spatial and temporal dynamics of river channel migration and vegetation in central Amazonian white-water floodplains by remote-sensing techniques. Remote Sens Environ 113(10):2258–2266. http://linkinghub.elsevier.com/retrieve/pii/S003442570900193X. Accessed 1 June 2013

  • Pereira MJR, Marques JT, Santana J, Santos CD, Valsecchi J, Queiroz HL, Palmeirim JM (2009) Structuring of Amazonian bat assemblages: the roles of flooding patterns and floodwater nutrient load. J Anim Ecol 78(6):1163–1171

    Article  PubMed  Google Scholar 

  • Pires JM, Koury HM (1959) Estudo de um trecho de mata de várzea próximo a Belém. Bol Téc IAN 36:3–44

    Google Scholar 

  • Pontius RG Jr, Millones M (2011) Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens 32(15):4407–4429

    Article  Google Scholar 

  • Prance GT (1979) Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonia 31:26–38

    Article  Google Scholar 

  • Queiroz HL, Peralta N, Gatay I, Becker B (2006) Reservas de Desenvolvimento Sustentável: Manejo Integrado de Recursos Naturais e Gestão Participativa. Dimensões Humanas da Biodiversidade. Vozes, Petrópolis

    Google Scholar 

  • Ramalho EE, Macedo J, Vieira TM, Valsecchi J, Calvimontes J, Marmontel M, Queiroz HL (2009) Ciclo Hidrológico nos ambientes de várzea da Reserva de Desenvolvimento Sustentável Mamirauá- Médio Solimões, período de 1990 a 2008. Uakari 5(1):61–87

    Google Scholar 

  • Ramsar Convention Secretariat (2013) The Ramsar convention manual: a guide to the convention on wetlands (Ramsar, Iran, 1971), 6th ed. 112 p. Available at http://www.ramsar.org/pdf/lib/manual6-2013-e.pdf

  • Rennó CD, Novo EMLM, Banon LC (2013) Correção geométrica da Máscara de áreas alagáveis da bacia amazônica. Anais XV Simpósio Brasileiro de Sensoriamento Remoto, pp 5507–5514, ISBN: 978-85-17-00065-2

  • Renó VF, Novo EMLM, Suemitsu C, Rennó CD, Silva TSF (2011) Assessment of deforestation in the lower Amazon floodplain using historical Landsat MSS/TM imagery. Remote Sens Environ 115:3446–3456

    Article  Google Scholar 

  • Rodrigues WA (1961) Estudo preliminar de mata de várzea alta de uma ilha do baixo Rio Negro de solo argiloso e úmido. Pub n 10 Inst Nac Pesq Amazôn, Manaus

  • Rosenqvist A, Forsberg BR, Pimentel T, Rauste YA, Richey JE (2002) The use of spaceborne radar data to model inundation patterns and trace gas emissions in the Central Amazon floodplain. Int J Remote Sens 23:1303–1328

    Article  Google Scholar 

  • Rosenqvist A, Shimada M, Ito N, Watanabe M (2007) ALOS PALSAR: a pathfinder mission for global-scale monitoring of the environment. IEEE Trans Geosci Remote Sens 45:3307–3316

    Article  Google Scholar 

  • Rosenqvist A, Shimada M, Lucas R et al (2010) The Kyoto & Carbon Initiative: a brief summary. IEEE J Sel Top Appl Earth Obs Remote Sens 3:551–553

    Article  Google Scholar 

  • Sartori LR, Imai NN, Mura JC, Novo EMLM, Silva TSF (2011) Mapping macrophyte species in the Amazon floodplain wetlands using fully polarimetric ALOS/PALSAR Data. IEEE Trans Geosci Remote Sens 49:4717–4728

    Article  Google Scholar 

  • Schöngart J, Junk WJ (2007) Forecasting the flood-pulse in Central Amazonia by ENSO-indices. J Hydrol 335(1):124–132

    Article  Google Scholar 

  • Schöngart J, Queiroz HL (2010) Timber extraction in the Central Amazonian floodplains. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Schöngart J, Junk WJ, Piedade MTF, Ayres JM, Hüttermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern oscillation effect. Glob Change Biol 10:683–692

    Article  Google Scholar 

  • Shi Z, Fung KB (1994) A comparison of digital speckle filters. In: Proceedings of IGARSS 94, Aug 8–12, pp 2129–2133

  • Shimada M, Isoguchi O, Tadono T, Isono K (2009) PALSAR radiometric and geometric calibration. IEEE Trans Geosci Remote Sens 47(12):3915–3932

    Article  Google Scholar 

  • Silva TSF, Costa MPF, Melack JM, Novo EMLM (2008) Remote sensing of aquatic vegetation: theory and applications. Environ Monit Assess 140(1–3):131–45. http://www.ncbi.nlm.nih.gov/pubmed/17593532. Accessed 8 Aug 2013

  • Silva TSF, Costa MPF, Melack JM (2010) Spatial and temporal variability of macrophyte cover and productivity in the eastern Amazon floodplain: a remote sensing approach. Remote Sens Environ 114:1998–2010

    Article  Google Scholar 

  • Silva TSF, Melack JM, Novo EMLM (2013) Responses of aquatic macrophyte cover and productivity to flooding variability on the Amazon floodplain. Glob Change Biol 19:3379–3389

    Google Scholar 

  • Silveira R, Ramalho EE, Thorbjarnarson JB, Magnusson WE (2010) Depredation by jaguars on caimans and importance of reptiles in the diet of jaguars. J Herpetol 44(3):418–424

    Article  Google Scholar 

  • Sioli H (1954) Beiträge zur regionalen Limnologie des Amazonasgebietes. Arch Hydrobiol 45:267–283

    Google Scholar 

  • Sociedade Civíl Mamirauá (1996) Mamirauá: management plan (summarized version). SCM, CNPq/MCT, Brasilía

    Google Scholar 

  • Takeuchi M (1962) The structure of the Amazonian vegetation. 6. Igapó. J Fac Sci Univ Tokyo Sect Bot 3:297–304

    Google Scholar 

  • Viana JP, Castello L, Damasceno JMB, Amaral ESR, Estupiñan GMB, Arantes C, Blanc D (2007) Manejo comunitário do Pirarucu Arapaima gigas na Reserva de Desenvolvimento Sustentável Mamirauá-Amazonas, Brasil. Áreas Aquáticas Protegidas como Instrumento de Gestão Pesqueira, 4. MMA, Brasília

  • Walker WS, Stickler CM, Kellndorfer JM, Kirsch KM, Nepstad DC (2010) Large-area classification and mapping of forest and land cover in the Brazilian Amazon: a comparative analysis of ALOS/PALSAR and Landsat data sources. IEEE J Sel Top Appl Earth Obs Remote Sens 3(4):594–604. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5623307. Accessed 26 Aug 2013

  • Wittmann F, Anhuf D, Junk WJ (2002) Tree species distribution and community structure of central Amazonian várzea forests by remote-sensing techniques. J Trop Ecol 18:805–820

    Article  Google Scholar 

  • Wittmann F, Junk WJ, Piedade MT (2004) The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. For Ecol Manag 196(2–3):199–212. http://linkinghub.elsevier.com/retrieve/pii/S0378112704002439. Accessed 1 June 2013

  • Wittmann F, Schöngart J, Montero JC, Motzer T, Junk WJ, Piedade MTF, Queiroz HL, Worbes M (2006) Tree species composition and diversity gradients in white-water forests across the Amazon Basin. J Biogeogr 33(8):1334–1347. http://doi.wiley.com/10.1111/j.1365-2699.2006.01495.x. Accessed 29 May 2013

  • Wittmann F, Schöngart J, Brito JM, Oliveira-Wittmann A, Parolin P, Piedade MTF, Guillaumet JL (2010a) Manual of tree species in central Amazonian white-water floodplains: Taxonomy, Ecology, and Use. INPA, UEA, IDSM, Editora Valer, Manaus

    Google Scholar 

  • Wittmann F, Schöngart J, Junk WJ (2010b) Phytogeography, species diversity, community structure and dynamics of central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

Download references

Acknowledgments

We thank the Instituto Nacional de Pesquisas Espaciais (INPE) for the support during this study, and the Instituto de Desenvolvimento Sustentável Mamirauá (IDSM – OS/MCTI) for the financial support for this research. We also thank João Lanna and Fernanda Paim for sharing the field plot data. Dr. Silva acknowledges postdoctoral funding from the São Paulo Research Foundation (FAPESP grant 2010/11269-2). This work has been undertaken within the framework of JAXA’s Kyoto & Carbon Initiative, with ALOS PALSAR data provided by JAXA EORC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jefferson Ferreira-Ferreira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira-Ferreira, J., Silva, T.S.F., Streher, A.S. et al. Combining ALOS/PALSAR derived vegetation structure and inundation patterns to characterize major vegetation types in the Mamirauá Sustainable Development Reserve, Central Amazon floodplain, Brazil. Wetlands Ecol Manage 23, 41–59 (2015). https://doi.org/10.1007/s11273-014-9359-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-014-9359-1

Keywords

Navigation