Skip to main content
Log in

An approach to monitoring mangrove extents through time-series comparison of JERS-1 SAR and ALOS PALSAR data

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Between 2007 and 2010, Japan’s Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) captured dual polarization HH and HV data across the tropics and sub-tropics. A pan tropical dataset of Japanese Earth Resources Satellite (JERS-1) SAR (HH) data was also acquired between 1995 and 1998. The provision of these comparable cloud-free datasets provided an opportunity for observing changes in the extent of coastal mangroves over more than a decade. Focusing on nine sites distributed through the tropics, this paper demonstrates how these data can be used to backdate and update existing baseline maps of mangrove extent. The benefits of integrating dense time-series of Landsat sensor data for both validating assessments of change and determining the causes of change are outlined. The approach is evaluated for wider application across the geographical range of mangroves in order to advance the development of JAXA’s Global Mangrove Watch (GMW) program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrams EM, Rue DJ (1988) The Causes and Consequences of Deforestation Among the Prehistoric Maya. Hum Ecol 16(4):377–395

    Article  Google Scholar 

  • Allison MA, Lee MT (2004) Sediment exchange between Amazon Mudbanks and Shore-fringing Mangroves in French Guiana. Mar Geol 208(2–4):169–190

    Article  CAS  Google Scholar 

  • Baltzer F, Mead A, Fromard F (2004) Material exchange between the continental shelf and mangrove fringed coasts with special reference to the Amazon–Guianas coast. Mar Geol 208(204):115–126

    Article  Google Scholar 

  • Bandaranayake WM (1998) Traditional and medicinal uses of mangroves. Mangroves Salt Marshes 2(3):133–148

    Article  Google Scholar 

  • Chauvaud S, Bouchon C, Maniere R (1998) Remote sensing techniques adapted to high resolution mapping of Tropical Coastal Marine ecosystems (coral reefs, seagrass beds and mangrove). Int J Remote Sens 19(18):3625–3639

    Article  Google Scholar 

  • Chong VC, Low CB, Ichikawa T (2001) Contribution of mangrove Detritus to Juvenile Prawn nutrition: a dual isotope study in a Malaysian mangrove forest. Mar Biol 138(1):77–86

    Article  CAS  Google Scholar 

  • Dahdouh-Guebas F, Van Pottelbergh I, Kairo JG, Cannicci S, Koedam N (2004) Human-impacted Mamgroves in Gazi (Kenya): predicting future vegetation based on retrospective remote sensing, social surveys and tree distribution. Mar Ecol Prog Ser 272(May):77–92

    Article  Google Scholar 

  • Danielsen F, Sorensen MK, Olwig MF, Selvam V, Parish F, Burgess ND, Hiraishi T, Karunagaran VM, Rasmussen MS, Hansen LB, Quarto A, Suryadiputra N (2005) The Asian tsunami: a protective role for coastal vegetation. Science 310:643

    Article  CAS  PubMed  Google Scholar 

  • Diop ES, Gordon C, Semesi AK, Soumaré A, Diallo N, Guissé A, Ayivor JS (2002) Mangroves of Africa. Mangrove ecosystems. Springer, Heidelberg, pp 63–121

    Chapter  Google Scholar 

  • Donato DC, Kauffman B, Murdiyarso D, Kurnianto S, Stidham M, AndKanninem M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297

    Article  CAS  Google Scholar 

  • Ewel KC, Twilley RR, Eong O (1998) Different Kinds of Mangrove Forests Provide Different Goods and Services. Glob Ecol Biodivers Lett 7(1):83–94

    Article  Google Scholar 

  • Fatoyinbo TE, Simard M (2013) Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM. Int J Remote Sens 34(2):668–681

    Article  Google Scholar 

  • Fromard F, Vega C, Proisy C (2004) Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. Mar Geol 208(2–4):265–280

    Article  Google Scholar 

  • Gan BK (1995) A working plan for the Matang mangrove forest reserve Perak. State Government of Perak Darul Ridzuan, Perak

    Google Scholar 

  • Gaveau DLA, Epting J, Lyne O, Linkie M, Kumara I, Kanninen M, Leader-Williams N (2009) Evaluating whether protected areas reduce tropical deforestation in Sumatra. J Biogeogr 36(11):2165–2175

    Article  Google Scholar 

  • Ghandi Y, Hardiono M, Rahawarin Y, Nugroho J, Manusawai J (2008) Interpretation of mangrove ecosystem dynamic in Bintuni Bay nature reserve using Geographic Information System. Biodiversitas 9:156–159

    Article  Google Scholar 

  • Giri G, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20(1): 154–159

  • Gong W, Ong J (1990) Plant biomass and nutrient flux in a managed mangrove forest in Malaysia. Estuar Coast Shelf Sci 31(5):519–530

    Article  CAS  Google Scholar 

  • Gopal B, Chauhan M (2006) Biodiversity and its Conservation in the Sundarban Mangrove Ecosystem. Aquat Sci 68(2006):338–354

    Article  Google Scholar 

  • Green EP, Clark CD, Mumby PJ, Edwards AJ, Ellis AC (1998) Remote sensing techniques for Mangrove mapping. Int J Remote Sens 19(5):935–956

    Article  Google Scholar 

  • Held A, Ticehurst C, Lymburner L, Williams N (2003) High resolution mapping of tropical mangrove ecosystems using hyperspectral and radar remote sensing. Int J Remote 24(13):2739–2759

    Article  Google Scholar 

  • JAXA EORC (2014a) ALOS Kyoto & Carbon Initiative homepage http://www.eorc.jaxa.jp/ALOS/en/top/kyoto_top.htm. Accessed 5 Aug 2014

  • JAXA EORC (2014b) The ALOS-2 Basic Observation Scenario, First Edition, January 10, 2014. http://www.eorc.jaxa.jp/ALOS-2/en/obs/scenario/ALOS-2_Basic_Observation_Scenario_First-Ed_E_v00.pdf. Accessed 5 Aug 2014

  • Kairo JG, Kivyatu B, Koedam N (2002) Application of remote sensing and GIS in the management of mangrove forests within and adjacent to Kiunga marine protected area, Lamu, Kenya. Environ Dev Sustain 4(2):153–166

    Article  Google Scholar 

  • Kovacs JM, Wang J, Flores-Verdugo F (2005) Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific. Estuar Coast Shelf Sci 62(1–2):377–384

    Article  Google Scholar 

  • Lucas RM, Mitchell AL, Rosenqvist A, Proisy C, Melius A, Ticehurst C (2007) The potential of L-band SAR for quantifying mangrove characteristics and change: case studies from the tropics. Aquat Conserv: Mar Freshw Ecosyst 17(3):245–264

    Article  Google Scholar 

  • Lucas RM, Rebelo L, Fatoyinbo L, Rosenqvist A, Itoh T, Shimada M, Simard M, Souza-Filho P, Thomas N, Trettin C, Accad A, Carreiras J, Hilarides L (2014) Contribution of L-band SAR to systematic global mangrove monitoring. Mar Freshw Res 65:1–15

    Google Scholar 

  • Mitchell AL, Lucas RM, Donnelly BE, Pfizner K, Milne AK, Finlayson M (2006) A new map of mangroves for Kakadu National Park, Northern Australia, based on stereo aerial photography. Wetl Ecol Manag 17:446–467

    Google Scholar 

  • Mougin E, Proisy C, Marty G, Fromard, F, Puig H, Betoulle JL, Rudant JP (1999) Multifrequency and multipolarization radar backscattering from mangrove forests. IEEE Trans Geosci Remote Sens 37(1):94–102

  • Pasqualini V, Iltis J, Dessay N, Lointier M, Guelorget O, Polidori L (1999) Mangrove mapping in North-Western Madagascar using SPOT-XS and SIR-D radar data. Hydrobiologia 413:127–133

    Article  Google Scholar 

  • Pattanaik C, Narendra Prasad S (2011) Assessment of aquaculture impact on mangrove of Mahanadi delta (Orissa), East coast of India using remote sensing and GIS. Ocean Coast Manag 54(11):789–795

    Article  Google Scholar 

  • Proisy C, Mougin E, Fromard F, Karam MA (2000) Interpretation of polarimetric radar signatures of mangrove forests. Remote Sens Environ 71:56–66

  • Rahman AF, Dragoni D, Didan K, Barreto-Munoz A, Hutabarat JA (2013) Detecting large scale conversion of mangroves to aquaculture with change point and mixed-pixel analyses of high fidelity MODIS data. Remote Sens Environ 130:96–107

  • Rosenqvist A, Shimada M, Chapman B, Freeman A, De Grandi G, Saatchi S, Rauste Y (2000) The global rain forest mapping project–a review. Int J Remote Sens 21(6&7):1375–1387

    Article  Google Scholar 

  • Rosenqvist A, Shimada M, Watanabe M (2007) ALOS PALSAR: a pathfinder mission for global-scale monitoring of the environment. IEEE Trans Geosci Remote Sens 45(11):3307–3316

    Article  Google Scholar 

  • Saleh MA (2007) Assessment of mangrove vegetation on Abu Minqar Island of the Red Sea. J Arid Environ 68(2):331–336

    Article  Google Scholar 

  • Schaeffer-Novelli Y, Cintron-Molero G, Adaime RR (1990) Variability of mangrove ecosystems along the Brazilian Coast. Estuaries 13(2):204–218

    Article  Google Scholar 

  • Seto KC, Fragkias M (2007) Mangrove conversion and aquaculture development in Vietnam: a remote sensing-based approach for evaluating the Ramsar convention on wetlands. Glob Environ Change 17(3–4):486–500

    Article  Google Scholar 

  • Shimada M, Ohtaki T (2010) Generating large-scale high-quality SAR mosaic datasets: application to PALSAR data for global monitoring. IEEE J Sel Top Appl Earth Observ Remote Sens 3(4):637–656

  • Simard M, De Grandi G, Saatchi S, Mayaux P (2002) Mapping tropical coastal vegetation using JERS-1 and ERS-1 radar data with a decision tree classifier. Int J Remote Sens 23(7):1461–1474

    Article  Google Scholar 

  • Simard M, Zhang KQ, Rivera-Monroy VH, Ross MS, Ruiz PL, Castaneda-Moya E, Twilley RR, Rodriguez E (2006) Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogramm Eng Remote Sens 72(3):299–311

    Article  Google Scholar 

  • Simard M, Rivera-Monroy VH, Mancera-Pineda JE, Castaneda-Moya E, Twilley RR (2008) A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topographic Mission elevation data, ICEsat/GLAS waveforms and field data: Applications to Ciénaga Grande de Santa Marta, Colombia. Remote Sens Environ 112:2131–2144

    Article  Google Scholar 

  • Spalding M, Blasco F, Field C (1997) World mangrove atlas. International Society for Mangrove Ecosystems, Okinawa

    Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves, 2nd edn. Earthscan, London, p 336

    Google Scholar 

  • Thu PM, Populus J (2007) Status and changes of mangrove forest in Mekong delta: case study in Tra Vinh Vietnam. Estuar Coast Shelf Sci 71(1–2):98–109

    Article  Google Scholar 

  • Wang Y, Imhoff ML (1993) Simulated and observed L-HH Radar backscater from tropical mangrove forests. Int J Remote Sens 14(15):2819–2828

    Article  Google Scholar 

  • Wang L, Sousa-Filho WP, Gong P (2004) Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. Int J Remote Sens 25(24):5655–5688

    Article  Google Scholar 

  • Whitten T, Damanik SJ, Anwar J, Hisyam N (1997) The Ecology of Sumatra. Eric Oey, Singapore

    Google Scholar 

Download references

Funding

Japanese Space Exploration Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Lucas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, N., Lucas, R., Itoh, T. et al. An approach to monitoring mangrove extents through time-series comparison of JERS-1 SAR and ALOS PALSAR data. Wetlands Ecol Manage 23, 3–17 (2015). https://doi.org/10.1007/s11273-014-9370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-014-9370-6

Keywords

Navigation