Skip to main content

Advertisement

Log in

Anatomical and physiological adaptations of mangroves

  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

This review focused on some specific histo-physiological features of the mangroves that help them to adjust and grow extensively in the saline rich coastal regions. Sundarban, the largest chunk of coastal ecosystems of the world located between India and Bangladesh has the widest range of mangrove species in its tidal influenced highly saline soil. Several anatomical characteristics to conserve water are mostly species specific and unique to these plants as such characteristics are not found in their genetically close relatives. The most conspicuous features are succulent leaves with increased mesophyll area, thick cuticle and wax deposition on epidermis. Chlorenchyma cells with large vacuoles are often found associated with different forms of salt secreting glands. A cavitation resistant xylem structure in the stem is one of the mechanisms of mangroves to safeguard their water transport. Non-annual growth ring in some mangroves could be a potential proxy for past environmental conditions. Most root systems show reduced cortex with aerenchyma but wider casparian strip. These anatomical characteristics are the basis for their physiological adaptation to high saline condition. Mangroves can regulate ion homeostasis under salt stress by salt secretion, ultrafiltration and ion sequestration. Salinity stress leads to accumulation of reactive oxygen species (ROS), peroxidation of membrane lipids and inactivation of proteins. Mangroves can activate diverse components of their antioxidative system to eliminate H2O2 and restrict the accumulation of ROS. All these characteristics help the mangroves to photosynthesize optimally and show a good vegetative growth under tidal influenced varied saline condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alongi DM (2009) The Energetics of Mangrove Forests. Springer, Berlin

    Google Scholar 

  • Amtmann A, Leigh R (2010) Ion Homeostasis. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Berlin, pp 245–262

    Google Scholar 

  • Anderson VJ, Briske DD (1990) Stomatal distribution, density and conductance of three perennial grasses native to the southern true prairie of Texas. Am Midl Nat 123:152–159

    Article  Google Scholar 

  • Andrews TJ, Clough BF, Muller GJ (1984) Photosynthetic gas exchange and carbon isotope ratios of some mangroves in North Queensland. In: Teas HJ (ed) Physiology and management of mangroves. Junk Publications, The Hague, Tasks for Vegetation Science, pp 15–23

    Chapter  Google Scholar 

  • Attiwill PM, Clough BF (1980) Carbon dioxide and water vapour exchange in the white mangrove. Photosynthetica 14:40–47

    Google Scholar 

  • Augustinus PGEF (1995) Geomorphology and sedimentology of mangroves. In: Perillo GME (ed) Geomorphology and sedimentology of estuaries. Developments in sedimentology, 53rd edn. Elsevier Science, Amsterdam, The Netherlands, pp 333–357

    Chapter  Google Scholar 

  • Ball MC (1986) Photosynthesis in mangroves. Wetl (Aust) 6:12–22

    Google Scholar 

  • Ball MC, Farquhar GD (1984) Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions. Plant Physiol 74:1–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barhoumi Z, Djebali W, Chaibi W, Abdelly C, Smaoui A (2007) Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis. J Plant Res 120:529–537

    Article  CAS  PubMed  Google Scholar 

  • Baumel A, Ainouche ML, Bayer RJ, Ainouche AK, Misset MT (2002) Molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae). Mol Phylogenetic Evol 22:303–314

    Article  CAS  Google Scholar 

  • Björkman O, Demmig B, Andrews TJ (1988) Mangrove photosynthesis: response to high-irradiance stress. Aust J Plant Physiol 15:43–61

    Article  Google Scholar 

  • Brini F, Masmoudi K (2012) Ion transporters and abiotic stress tolerance in plants. ISRN Mol Biol 2012:1–13

    Article  CAS  Google Scholar 

  • Chatterjee M, Shankar D, Sen GK, Sanyal P, Sundar D, Michael GS, Chatterjee A, Amol P, Mukherjee D, Suprit K, Mukherjee A, Vijith V, Chatterjee S, Basu A, Das M, Chakraborti S, Kalla A, Misra SK, Mukhopadhyay S, Mandal G, Sarkar K (2013) Tidal variations in the Sundarbans Estuarine System, India. J Earth Syst Sci 122:899–933

    Article  Google Scholar 

  • Cheeseman JM, Herendeen LB, Cheeseman AT, Clough BF (1997) Photosynthesis and photoprotection in mangroves under field conditions. Plant, Cell Environ 20:579–588

    Article  CAS  Google Scholar 

  • Choat B, Ball M, Luly J, Holtum J (2003) Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiol 131:41–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choat B, Lahr EC, Melcher P, Zwieniecki MA, Holbrook NM (2005) The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant, Cell Environ 28:1082–1089

    Article  Google Scholar 

  • Clough BF, Sim RG (1989) Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapour pressure deficit. Oecologia 79:38–44

    Article  Google Scholar 

  • Corcuera L, Camarero JJ, Gil-Pelegrin E (2004) Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees Struct Funct 18:83–92

    Article  Google Scholar 

  • Dickison WC (2000) Integrative plant anatomy. Harcourt Academic Press, San Diego

    Google Scholar 

  • Dodd RS, Fromard F, Rafii ZA, Blasco F (1995) Biodiversity among West African, Rhizophora: foliar wax chemistry. Biochem Syst Ecol 23:859–868

    Article  CAS  Google Scholar 

  • Duke NC (1991) A systematic revision of the mangrove genus Avicennia (Avicenniaceae) in Australia. Aust J Bot 27:657–678

    Article  Google Scholar 

  • Duke NC, Birch WR, Williams WT (1981) Growth rings and rainfall correlations in a mangrove tree of the genus Diospyros (Ebenaceae). Aust J Bot 29:135–142

    Article  Google Scholar 

  • Dutt SK, Bal AR, Bandopadhyay AK (1991) Salinity induced chemical changes in Casuarina equisitifolia Forst. Egypt J Soil Sci 31:57–63

    CAS  Google Scholar 

  • Ellis RP (1986) A review of comparative leaf blade anatomy in the systematics of the Poaceae: the past twenty-five years. In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds) Grass systematics and evolution. Smithsonian Institute Press, Washington DC, pp 3–10

    Google Scholar 

  • Ellison AM, Farnsworth EJ (2000) Mangrove communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine Community Ecology. Sinauer Associates, New York, pp 423–442

    Google Scholar 

  • Ellmore GS, Zanne AE, Orians CM (2006) Comparative sectoriality in temperate hardwoods: hydraulics and xylem anatomy. Bot J Linn Soc 150:61–71

    Article  Google Scholar 

  • Ewel KC, Bourgeois JA, Cole TG, Zheng S (1998) Variation in environmental characteristics and vegetation in high-rainfall mangrove forests, Kosrae, Micronesia. Glob Ecol Biogeogr Lett 7:49–56

    Article  Google Scholar 

  • Ewers FW, Lopez-Portillo J, Angeles G, Fisher JB (2004) Hydraulic conductivity and embolism in the mangrove tree Laguncularia racemosa. Tree Physiol 23:1057–1062

    Article  Google Scholar 

  • Fahn A (1990) Plant anatomy. Pergamon Press, Oxford

    Google Scholar 

  • Flowers TJ, Flowers SA, Hajibagheri MA, Yeo AR (1990) Salt tolerance in the halophytic wild rice, Porteresia coarctata Takeoka. New Phytol 114:675–684

    Article  CAS  Google Scholar 

  • Gielwanowska I, Szczuka E, Bednara J, Gorecki R (2005) Anatomical features and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats. Ann Bot 96:1109–1119

    Article  PubMed Central  PubMed  Google Scholar 

  • Gill AM (1971) Endogenous control of growth ring development in Avicennia. For Sci 17:462–465

    Google Scholar 

  • Gilmore AM, Björkman O (1994) Adenine nucleotides and the xanthophyll cycle in leaves. Planta 192:526–536

    Article  CAS  Google Scholar 

  • Grass Phylogeny Working Group (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Mo Bot Gard 88:373–457

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    Article  PubMed  Google Scholar 

  • Hamid A (1995) Adaptability potential of Cholistan Sporobolus locladus Nees Ex. Disssertation, University of Agriculture, Faisalabad, Pakistan, Trin. agianst different salinity levels. M.Phil

    Google Scholar 

  • Hanson AD, Rathinasabapathi B, Rivoal J, Burnet M, Dillon MO, Gage DA (1994) Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Aca Sci USA 91:306–310

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hoguane AM, Hill AE, Simpson JH, Gowers DG (1999) Diurnal and tidal variation of temperature and salinity in the Ponta Rasa mangrove swamp, Mozambique. Estuar Coast Shelf Sci 49:251–264

    Article  CAS  Google Scholar 

  • Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245–2264

    Article  CAS  PubMed  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida A (2006) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep 25:865–876

    Article  CAS  PubMed  Google Scholar 

  • Karmer D, Anderson WP, Preston J (1978) Transfer cells in the root epidermis of Atriplex hastata L. as a response to salinity: a comparative cytological and X–ray microprobe investigation. Aust J Plant Physiol 5:739–747

    Article  Google Scholar 

  • Kathiresan K, Bingham BL (2001) Biology of mangrove and mangrove ecosystems. Adv Mar Biol 40:81–251

    Google Scholar 

  • Komiyama A, Ong JE, Poungparn S (2008) Allometry, biomass, and productivity of mangrove forests: a review. Aquat Bot 89:128–137

    Article  Google Scholar 

  • Koyro HW, Huchzermeyer B (2004) Ecophysiological needs of the potential biomass crop Spartina townsendii Grov. Trop Ecol 45:123–139

    Google Scholar 

  • Lakshmi M, Rajalakshmi S, Parani M, Anuratha CS, Parida A (1997) Molecular phylogeny of mangroves. I. Use of molecular markers in assessing the intraspecific genetic variability in the mangrove species Acanthus ilicifolius Linn. (Acanthaceae). Theor Appl Genet 94:1121–1127

    Article  CAS  Google Scholar 

  • Levering CA, Thomson WW (1971) The ultrastructure of the salt gland of Spartinia foliosa. Planta 97:183–196

    Article  CAS  PubMed  Google Scholar 

  • Lewis RR (2005) Ecological engineering for successful management and restoration of mangrove forests. Ecol Eng 24:403–418

    Article  Google Scholar 

  • Lokhande V, Suprasanna P (2012) Prospects of Halophytes in Understanding and Managing Abiotic Stress Tolerance. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, Berlin, pp 29–56

    Chapter  Google Scholar 

  • Long SP, Incoll LD, Woolhouse HW (1975) C4 photosynthesis in plants from cool temperate regions, with particular reference to Spartina townsendii. Nature 257:622–624

    Article  CAS  Google Scholar 

  • Longstreth DJ, Nobel PS (1979) Salinity effects on leafanatomy; consequences for photosynthesis. Plant Physiol 63:700–703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Portillo J, Ewers FW, Angeles G (2005) Sap salinity effects on xylem conductivity in two mangrove species. Plant, Cell Environ 28:1285–1292

    Article  Google Scholar 

  • Lovelock CE (2008) Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11:342–354

    Article  CAS  Google Scholar 

  • Lovelock CE, Clough BF (1992) Influence of solar radiation and leaf xanthophylls concentrations in mangroves. Oecologia 91:518–525

    Article  Google Scholar 

  • Lovelock CE, Ball MC, Choat B, Engelbrecht BMJ, Holbrook NM, Feller I (2006) Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle. Plant, Cell Environ 29:793–802

    Article  CAS  Google Scholar 

  • Lowenfeld R, Klekowski EJ (1992) Mangrove genetics. I. Mating system and mutation rates of Rhizophora mangle in Florida and San Salvador Island Bahamas. Int J Plant Sci 153:394–399

    Article  Google Scholar 

  • Lugo A, Snedaker S (1974) The ecology of mangroves. Ann Rev Ecol Syst 5:39–64

    Article  Google Scholar 

  • Majumder AL, Segupta S, Goswami L (2010) Osmolyte regulation in abiotic stress. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer Science, Berlin, pp 349–370

    Google Scholar 

  • Manna S, Chaudhuri K, Bhattacharyya S, Bhattacharyya M (2010) Dynamics of Sundarban estuarine ecosystem: eutrophication induced threat to mangroves. Saline Syst 6:8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maricle BR, Koteyeva NK, Voznesenskaya EV, Thomasson JR, Edwards GE (2009) Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C4 genus Spartina (Poaceae). New Phytol 184:216–233

    Article  CAS  PubMed  Google Scholar 

  • Mauseth JD (1988) Plant Anatomy. The Benjamin/Cummings Publishing Co., Inc., California

    Google Scholar 

  • Mauseth JD, Stevenson JF (2004) Theoretical considerations of vessel diameter and conductive safety in populations of vessels. Int J Plant Sci 165:359–368

    Article  Google Scholar 

  • Mazda Y, Magi M, Kogo M, Hong PN (1997) Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves Salt Marshes 1:127–135

    Article  Google Scholar 

  • McKee KL (2001) Root proliferation in decaying roots and old root channels: a nutrient conservation mechanism in oligotrophic mangrove forests? J Ecol 89:876–887

    Article  Google Scholar 

  • Melcher PJ, Goldstein G, Meinzer FC, Yount DE, Jones TJ, Holbrook NM (2001) Water relations of coastal and estuarine Rhizophora mangle: xylem pressure potential and dynamics of embolism formation and repair. Oecologia 126:182–192

    Article  Google Scholar 

  • Menezes M, Berger U, Worbes M (2003) Annual growth rings and long-term growth patterns of mangrove trees from the Braganca peninsula, North Brazil. Wetl Ecol Manag 11:233–242

    Article  Google Scholar 

  • Mimura T, Kura-Hotta M, Tsujimura T, Ohnishi M, Miura M, Okazaki Y, Mimura M, Maeshima M, Washitani-Nemoto S (2003) Rapid increase of vacuolar volume in response to salt stress. Planta 216:397–402

    CAS  PubMed  Google Scholar 

  • Mokhamed AM, Raldugina GN, Kholodova VP, Kuznetsov V (2006) Osmolyte accumulation in different rape genotypes under sodium chloride salinity. Russian J Plant Physiol 53:649–655

    Article  CAS  Google Scholar 

  • Mondal R, Naskar K (2008) Diversity and classification of Indian mangroves: a review. Trop Ecol 49:131–146

    Google Scholar 

  • Munns R (1992) Physiological process limiting plant growth in saline soil: some dogmas and hypothesis. Plant, Cell Environ 16:18–24

    Google Scholar 

  • Munns M (2002) Comparative Physiology of salt and water stress. Plant, Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Naskar S (2014) Histo-Physiological and biochemical studies of some salt tolerant plants of Indian Sundarbans. Ph.D. Thesis, University of Calcutta, Kolkata, India

  • Orians CM, van-Vuuren MMI, Harris NL, Babst B, Ellmore GS (2004) Differential sectoriality in long-distance transport in temperate tree species: evidence from dye flow, 15 N transport, and vessel element pitting. Trees 18:501–509

    Article  Google Scholar 

  • Paliyavuth C, Clough B, Patanaponpaiboon P (2004) Salt uptake and shoot water relations in mangroves. Aquat Bot 78:349–360

    Article  CAS  Google Scholar 

  • Parida AK, Jha B (2010) Salt tolerance mechanisms in mangroves: a review. Trees 24:199–217

    Article  Google Scholar 

  • Parida AK, Das AB, Sanada Y, Mohanty P (2004) Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquat Bot 80:77–87

    Article  CAS  Google Scholar 

  • Pennings SC, Grant MB, Bertness MD (2005) Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. J Ecol 93:159–167

    Article  Google Scholar 

  • Rasid P, Ahmed A (2011) Anatomical adaptation of Myriostachya wightiana hook. F. to salt stress. Dhaka Univ J Biol Sci 20:205–208

    Google Scholar 

  • Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M (2003) The evolution of plant functional variation: traits, spectra and strategies. Int J Plant Sci 164:S143–S164

    Article  Google Scholar 

  • Robert EMR, Schmitz N, Boeren I, Driessens T, Herremans K, Mey JD, Van de Casteele E, Beeckman H, Koedam N (2011) Successive Cambia: a developmental oddity or an adaptive structure? PLoS ONE 6:e16558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Volkenburgh EV, Hoy M, Wright L, Backwith F, Kim Y, Redman RS (2008) Stress tolerance in plants via habitat- adapted symbiosis. ISEM J 2:404–416

    Article  Google Scholar 

  • Saenger P, Bellan MF (1995) The mangrove vegetation of the Atlantic coast of Africa: a review. Universite de Toulouse Press, Toulouse

    Google Scholar 

  • Schaeffer-Novelli Y, Cintrón-Molero G, Adaime R, Camargo T (1990) Variability of mangrove ecosystems along the brazilian coast. Estuaries 13:204–218

    Article  Google Scholar 

  • Schmitz N, Verheyden A, Beeckman H, Kairo JG, Koedam N (2006) Influence of a salinity gradient on the vessel characters of the mangrove species Rhizophora mucronata Lam. Ann Bot 98:1321–1330

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmitz N, Jensen S, Verheyden A, Kairo JG, Beeckman H, Koedam N (2007) Comparative anatomy of intervessel pits in two mangrove species growing along a natural salinity gradient in Gazi Bay, Kenya. Ann Bot 100:271–281

    Article  PubMed Central  PubMed  Google Scholar 

  • Scholander PF, van Dam L, Scholander SI (1955) Gas exchange in the roots of mangroves. Am J Bot 42:92–98

    Article  CAS  Google Scholar 

  • Sengupta S, Majumder AL (2010) Porteresia coarctata (Roxb.) Takeoka, a wild rice: a potential model for studing salt-stress biology in rice. Plant, Cell Environ 33:526–542

    Article  CAS  Google Scholar 

  • Shan L, RenChao Z, SuiSui D, SuHua S (2008) Adaptation to salinity in mangroves: implication on the evolution of salt-tolerance. Chin Sci Bull 53:1708–1715

    Article  Google Scholar 

  • Sperry JS, Hacke UG (2004) Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes. Am J Bot 91:369–385

    Article  PubMed  Google Scholar 

  • Sutherland GK, Eastwood A (1916) The physiological anatomy of Spartina townsendii. Ann Bot 30:333–351

    Google Scholar 

  • Tada Y, Kashimura T (2009) Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorrhiza. Plant Cell Physiol 50:439–446

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Massachusetts

    Google Scholar 

  • Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z (2000) Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat Bot 68:15–28

    Article  CAS  Google Scholar 

  • Thomson WW, Faraday CD, Oross JW (1988) Salt glands. In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman Scientific and Technical, UK, pp 498–537

    Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Touchette BW, Smith GA, Rhodes KL, Poole M (2009) Tolerance and avoidance: two contrasting physiological responses to salt stress in mature marsh halophytes Juncus roemerianus Scheele and Spartina alterniflora Loisel. J Exp Mar Biol Ecol 380:106–112

    Article  CAS  Google Scholar 

  • Treude T (2012) Biogeochemical reactions in marine sediments underlying anoxic water bodies. In: Altenbach AV, Bernhard JM, Sackbach J (eds) Anoxia: evidence of eukaryote survival and paleontological strategies. Springer, Berlin, pp 19–38

    Google Scholar 

  • Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360

    Article  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Ann Rev Plant Physiol Plant Mol Biol 40:19–38

    Article  Google Scholar 

  • Verheyden A, Kairo JG, Beeckman H, Koedam N (2004) Growth rings, growth ring formation and age determination in the mangrove Rhizophora mucronata. Ann Bot 94:59–66

    Article  PubMed Central  PubMed  Google Scholar 

  • Verheyden A, De-Ridder F, Schmitz N, Beeckman H, Koedam N (2005) High-resolution time series of vessel density in Kenyan mangrove trees reveal a link with climate. New Phytol 167:425–435

    Article  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Yan Z, You S, Zhang Y, Chen L, Lin G (2011) Mangroves: obligate or facultative halophytes? a review. Trees 25:953–963

    Article  CAS  Google Scholar 

  • Wegner LH (2010) Oxygen Transport in Waterlogged Plants. In: Mancuso S, Shabala S (eds) Waterlogging signalling and tolerance in plants. Springer-Verlag, Barlin, pp 3–22

    Chapter  Google Scholar 

  • Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell Environ 28:800–812

    Article  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell Environ 25:131–139

    Article  CAS  Google Scholar 

  • Yamada A, Saitoh T, Mimura T, Ozeki Y (2002) Expression of mangrove allene cyclase enhances salt tolerance in Escherichia coli, yeast and tobacco cells. Plant Cell Physiol 43:903–910

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1212–1222

    Article  Google Scholar 

  • Zhang YH, Wang WQ, Lin P (2004) Growth and leaves membrane lipid peroxidation of Bruguiera gymnorrhiza (L.) Lamk. Seedlings under long and short-term salinity. Acta Hydrobiol Sin 28:186–190

    CAS  Google Scholar 

  • Zhu J (2001) Plant Salt Tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu J (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer-Verlag, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

We would like to thank to Principal, Barasat Govt. College and Director, Central Research Institute of Jute and Allied Fibres for providing all necessary facilities to complete this research work. We acknowledge the support from University Grand Commission, India under UGC Minor Research Project Scheme. University Grants Commission (India) Minor Project Scheme. UGC Approval No.-F.PSW-109/09-10 dated 08.10.2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Naskar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naskar, S., Palit, P.K. Anatomical and physiological adaptations of mangroves. Wetlands Ecol Manage 23, 357–370 (2015). https://doi.org/10.1007/s11273-014-9385-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-014-9385-z

Keywords

Navigation