Skip to main content

Advertisement

Log in

Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes

  • Invited Feature Article
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Our limited knowledge of the size of the carbon pool and exchange fluxes in forested lowland tropical peatlands represents a major gap in our understanding of the global carbon cycle. Peat deposits in several regions (e.g. the Congo Basin, much of Amazonia) are only just beginning to be mapped and characterised. Here we consider the extent to which methodological improvements and improved coordination between researchers could help to fill this gap. We review the literature on measurement of the key parameters required to calculate carbon pools and fluxes, including peatland area, peat bulk density, carbon concentration, above-ground carbon stocks, litter inputs to the peat, gaseous carbon exchange, and waterborne carbon fluxes. We identify areas where further research and better coordination are particularly needed in order to reduce the uncertainties in estimates of tropical peatland carbon pools and fluxes, thereby facilitating better-informed management of these exceptionally carbon-rich ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen JA, Krauss KW, Ewel KC, Keeland BD, Waguk EE (2005) A tropical freshwater wetland: 1. Structure, growth, and regeneration. Wetl Ecol Manage 13:657–669

    Google Scholar 

  • Alsdorf DE (2003) Water storage of the central Amazon floodplain measured with GIS and remote sensing imagery. Ann Assoc Am Geogr 93:55–66

    Google Scholar 

  • Anderson JAR (1983) The tropical peat swamps of western Malesia. In: Gore AJP (ed) Ecosystems of the World 4B: mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 181–199

    Google Scholar 

  • Asner GP, Mascaro J, Anderson C, Knapp DE, Martin RE, Kennedy-Bowdoin T, van Breugel M, Davies S, Hall JS, Muller-Landau HC, Potvin C, Sousa W, Wright J, Bermingham E (2013) High-fidelity national carbon mapping for resource management and REDD+. Carbon Balance Manage 8:1–7

    Google Scholar 

  • Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe D, Hackler J, Beck PSA, Dubayah R, Friedl MA, Samanta S, Houghton RA (2012) Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat Clim Change 2:182–185

    CAS  Google Scholar 

  • Baker TR, Chao KJ (2011) Manual for coarse woody debris measurement in RAINFOR plots. http://www.rainfor.org/upload/ManualsEnglish/CWD_protocol_RAINFOR_2011_EN.pdf. Accessed 24 Dec 2014

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, di Fiore A, Martínez RV (2004) Increasing biomass in Amazonian forest plots. Philos T R Soc B 359:353–365

    Google Scholar 

  • Ballhorn U, Siegert F, Mason M, Limin S (2009) Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proc Natl Acad Sci USA 106:21213–21218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballhorn U, Jubanski J, Siegert F (2011) ICESat/GLAS data as a measurement tool for peatland topography and peat swamp forest biomass in Kalimantan, Indonesia. Remote Sens 3:1957–1982

    Google Scholar 

  • Baum A, Rixen T, Samiaji J (2007) Relevance of peat draining rivers in central Sumatra for the riverine input of dissolved organic carbon into the ocean. Estuar Coast Shelf S 73:563–570

    Google Scholar 

  • Betbeder J, Gond V, Frappart F, Baghdadi NN, Briant G, Bartholome E (2014) Mapping of Central Africa forested wetlands using remote sensing. IEEE J Sel Top Appl 7(2014):531–542

    Google Scholar 

  • Billett MF, Palmer SM, Hope D, Deacon C, Storeton-West R, Hargreaves KJ, Flechard C, Fowler D (2004) Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Glob Biogeochem Cycles 18(1):GB1024

    Google Scholar 

  • Brady MA (1997) Organic matter dynamics of coastal peat deposits in Sumatra, Indonesia. Unpublished PhD thesis, University of British Columbia

  • Buringh P (1984) Organic carbon in soils of the world. In: Woodwell GM (ed) The role of terrestrial vegetation in the global carbon cycle: measurement by remote sensing. Wiley, Chichester, pp 91–109

    Google Scholar 

  • Bwangoy J-RB, Hansen MC, Roy DP, de Grandi G, Justice CO (2010) Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens Environ 114:73–86

    Google Scholar 

  • Campbell D (2005) The Congo River basin. In: Fraser LH, Keddy PA (eds) The world’s largest wetlands: ecology and conservation. Cambridge University Press, Cambridge, pp 149–165

    Google Scholar 

  • Chambers JQ, Higuchi N, Ferreira LV, Melack JM, Schimel JP (2000) Decomposition and carbon cycling of dead trees in tropical forests of the Central Amazon. Oecologia 122:380–388

    Google Scholar 

  • Chambers FM, Beilman DW, Yu Z (2011) Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires and Peat 7, Art. 7. http://www.mires-and-peat.net/pages/volumes/map07/map0707.php. Accessed 24 Dec 2014

  • Chave J, Andalo J, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    CAS  PubMed  Google Scholar 

  • Chimner RA, Ewel KC (2005) A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetl Ecol Manage 13:671–684

    Google Scholar 

  • Chimner RA, Ott CA, Perry CH, Kolka RK (2014) Developing and evaluating rapid field methods to estimate peat carbon. Wetlands. doi:10.1007/s13157-014-0574-6

    Google Scholar 

  • Clymo RS (1983) Peat. In: Gore AJP (ed) Ecosystems of the world, vol 4A., Mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 159–224

    Google Scholar 

  • Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos 81:368–388

    Google Scholar 

  • Couwenberg J, Hooijer A (2013) Towards robust subsidence-based soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations. Mires Peat 12 Art. 1. http://www.mires-and-peat.net/pages/volumes/map12/map1201.php. Accessed 24 Dec 2014

  • Couwenberg J, Dommain R, Joosten H (2010) Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob Change Biol 16:1715–1732

    Google Scholar 

  • Cubizolle H, Mouandza MM, Muller F (2013) Mires and histosols in French Guiana (South America): new data relating to location and area. Mires Peat 12: Art. 3. http://www.mires-and-peat.net/pages/volumes/map12/map1203.php. Accessed 24 Dec 2014

  • de Grandi GF, Mayaux P, Rauste Y, Rosenqvist A, Saatchi S, Simard M, Leysen M (1998) Flooded forest mapping at regional scale in the Central Africa Congo River Basin: first thematic results derived by ERS-1 and JERS-1 radar mosaics. Proceedings of the second international workshop on retrieval of bio- and geophysical parameters from SAR data, October 21–23, 1998. ESA, Noordwijk, The Netherlands, pp 253–260

    Google Scholar 

  • de Grandi GF, Mayaux P, Malingreau JP, Rosenqvist A, Saatchi S, Simard M (2000) New perspectives on global ecosystems from wide-area radar mosaics: flooded forest mapping in the tropics. Int J Remote Sens 21:1235–1249

    Google Scholar 

  • de Vleeschouwer F, Chambers FM, Swindles GT (2010) Coring and sub-sampling of peatlands for palaeoenvironmental research. Mires Peat 7: Art. 1. http://www.mires-and-peat.net/pages/volumes/map07/map0701.php. Accessed 24 Dec 2014

  • Dommain R, Couwenberg J, Joosten H (2011) Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat Sci Rev 30:999–1010

    Google Scholar 

  • Dommain R, Couwenberg J, Glaser PH, Joosten H, Nyoman I, Suryadiputra N (2014) Carbon storage and release in Indonesian peatlands since the last deglaciation. Quat Sci Rev 97:1–32

    Google Scholar 

  • Draper FC, Roucoux KH, Lawson IT, Mitchard ETA, Honorio Coronado EN, Lähteenoja O, Torres Montenegro L, Valderrama E, Zaráte R, Baker TR (2014) Distribution and carbon stock of West Amazonian peatlands. Env Res Lett 9:124017

  • Drew WM, Ewel KC, Naylor RL, Sigrah A (2005) A tropical freshwater wetland: III. Direct use values and other goods and services. Wetl Ecol Manage 13:685–693

    Google Scholar 

  • Englhart S, Jubanski J, Siegert F (2013) Quantifying dynamics in tropical peat swamp forest biomass with multi-temporal LiDAR datasets. Remote Sens 5:2368–2388

    Google Scholar 

  • Farmer J, Matthews R, Smith P, Langan C, Hergoualc’h K, Verchot L, Smith JU (2013) Comparison of methods for quantifying soil carbon in tropical peats. Geoderma. doi:10.1016/j.geoderma.2013.09.013

    Google Scholar 

  • Feldpausch TR, Banin L, Phillips OL, Baker TR, Lewis SL, Quesada CA, Affum-Baffoe K, Arets EJMM, Berry NJ, Bird M, Brondizio ES, de Camargo P, Chave J, Djagbletey G, Domingues TF, Drescher M, Fearnside PM, França MB, Fyllas NM, Lopez-Gonzalez G, Hladik A, Higuchi N, Hunter MO, Iida Y, Salim KA, Kassim AR, Keller M, Kemp J, King DA, Lovett JC, Marimon BS, Marimon-Junior BH, Lenza E, Marshall AR, Metcalfe DJ, Mitchard ETA, Moran EF, Nelson BW, Nilus R, Nogueira EM, Palace M, Patiño S, Peh KS-H, Raventos MT, Reitsma JM, Saiz G, Schrodt F, Sonké B, Taedoumg HE, Tan S, White L, Wöll H, Lloyd J (2011) Height–diameter allometry of tropical forest trees. Biogeosciences 8:1081–1106

    Google Scholar 

  • Finér L, Laine J (1998) Root dynamics at drained peatland sites of different fertility in southern Finland. Plant Soil 201:27–36

    Google Scholar 

  • Franke J, Navratil P, Keuck V, Peterson K, Siegert F (2012) Monitoring fire and selective logging activities in tropical peat swamp forests. IEEE J Sel Top Appl 5:1811–1820

    Google Scholar 

  • Gallego-Sala AV, Prentice IC (2012) Blanket peat biome endangered by climate change. Nat Clim Change 3:152–155

    Google Scholar 

  • Gastaldo RA, Staub JR (1999) A mechanism to explain the preservation of leaf litter lenses in coals derived from raised mires. Palaeogeogr Palaeocl 149:1–14

    Google Scholar 

  • Gehring C, Zelarayán ML, Almeida RB, Moraes FHR (2011) Allometry of the babassu palm growing on a slash-and-burn agroecosystem of the eastern periphery of Amazonia. Acta Amazonica 41:127–134

    Google Scholar 

  • Givelet N, Le Roux G, Cheburkin A, Chen B, Frank J, Goodsite ME, Kempter H, Krachler M, Noernberg T, Rausch N, Rheinberger S, Roos-Barraclough F, Sapkota A, Scholz C, Shotyk W (2004) Suggested protocol for collecting, handling and preparing peat cores and peat samples for physical, chemical, mineralogical and isotopic analyses. J Environ Monitor 6:481–492

    CAS  Google Scholar 

  • Glaser PH, Volin JC, Givnish TJ, Hansen BCS, Stricker CA (2012) Carbon and sediment accumulation in the Everglades (USA) during the past 4000 years: rates, drivers, and sources of error. J Geophys Res 117:GB3026

    Google Scholar 

  • Goodman RC, Phillips OL, del Castillo TD, Freitas L, Cortese ST, Monteagudo A, Baker TR (2013) Amazon palm biomass and allometry. For Ecol Manage 310:994–1004

    Google Scholar 

  • Goodrich JP, Varner RK, Frolking S, Duncan BN, Crill PM (2011) High-frequency measurements of methane ebullition over a growing season at a temperate peatland site. Geophys Res Lett 38:L07404

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Google Scholar 

  • Harrison ME (2013) Standard operating procedure: forest litter-fall. Orangutan Tropical Peatland Project, Palangka Raya, Indonesia. http://www.outrop.com/uploads/7/2/4/9/7249041/litterfall.pdf. Accessed 24 Dec 2014

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Google Scholar 

  • Hess LL, Melack JM, Novo EMLM, Barbosa CCF, Gastil M (2003) Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens Environ 87:404–428

    Google Scholar 

  • Hirano T, Jauhiainen J, Inoue T, Takahashi H (2009) Controls on the carbon balance of tropical peatlands. Ecosystems 12:873–887

    CAS  Google Scholar 

  • Hirano T, Segah H, Kusin K, Limin S, Takahashi H, Osaki M (2012) Effects of disturbances on the carbon balance of tropical peat swamp forests. Global Change Biol 18:3410–3422

    Google Scholar 

  • Hirano T, Kusin K, Limin S, Osaki M (2014) Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland. Global Change Biol 20:555–565

    Google Scholar 

  • Hoekman DH (2007) Satellite radar observation of tropical peat swamp forest as a tool for hydrological modelling and environmental protection. Aquat Conserv 17:265–275

    Google Scholar 

  • Hoekman D, Vissers M (2007) ALOS PALSAR radar observation of tropical peat swamp forest as a monitoring tool for environmental protection and restoration. Proceedings of the IEEE international geoscience and remote sensing symposium, pp 3710–3714

  • Hooijer A, Page SE, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G (2012) Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053–1071

    CAS  Google Scholar 

  • Householder JE, Janovec JP, Tobler MW, Page SE, Lähteenoja O (2012) Peatlands of the Madre de Dios River of Peru: distribution, geomorphology, and habitat diversity. Wetlands 32:359–368

    Google Scholar 

  • Hoyos J (2014) Controls of carbon turnover in tropical peatlands. Unpublished PhD thesis, University of Nottingham

  • IPCC (2014) Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands. IPCC, Switzerland (eds Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler TG)

    Google Scholar 

  • Iversen CM, Murphy MT, Allen MF, Childs J, Eissenstat DM, Lilleskov EA, Sarjala TM, Sloan VL, Sullivan PF (2012) Advancing the use of minirhizotrons in wetlands. Plant Soil 352:23–39

    CAS  Google Scholar 

  • Jaenicke J, Rieley JO, Mott C, Kimman P, Siegert F (2008) Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 147:51–158

    Google Scholar 

  • Jaenicke J, Wosten H, Budiman A, Siegert F (2010) Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitig Adapt Strategies Glob Chang 15:223–239

    Google Scholar 

  • Jauhiainen J, Takahashi H, Heikkinen JEP, Martikainen PJ, Vasander H (2005) Carbon fluxes from a tropical peat swamp forest floor. Global Change Biol 11:1788–1797

    Google Scholar 

  • Jauhiainen J, Limin S, Silvennoinen H, Vasander H (2008) Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology 89:3503–3514

    PubMed  Google Scholar 

  • Jauhiainen J, Hooijer A, Page SE (2012) Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. Biogeosciences 9:617–630

    CAS  Google Scholar 

  • Joosten H, Clarke D (2002) Wise use of mires and peatlands—background and principles including a framework for decision-making. International Mire Conservation Group/International Peat Society, Finland

    Google Scholar 

  • Joosten H, Tapio-Biström M-L, Tol S (eds) (2012) Peatlands—guidance for climate change mitigation through conservation, rehabilitation and sustainable use, 2nd edn. Food and Agriculture Organization of the United Nations/Wetlands International, Rome

    Google Scholar 

  • Jubanski J, Ballhorn U, Kronseder K, Franke J, Siegert F (2013) Detection of large above ground biomass variability in lowland forest ecosystems by airborne LIDAR. Biogeosciences 10:3917–3930

    Google Scholar 

  • Jung HC, Hamski J, Durand M, Alsdorf D, Hossain F, Lee H, Hussain AKMA, Hasan K, Khan AS, Hoque AKMZ (2010) Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra Rivers. Earth Surf Proc Land 35:294–304

    Google Scholar 

  • Kelly TJ, Baird AJ, Roucoux KH, Baker TR, Coronado ENH, Ríos M, Lawson IT (2014) The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: measurements and implications for hydrological function. Hydrol Process 28:3373–3387

    Google Scholar 

  • Koehler AK, Sottocornola M, Kiely G (2011) How strong is the current carbon sequestration of an Atlantic blanket bog? Global Change Biol 17:309–319

    Google Scholar 

  • Krisnawati H, Adinugroho WC, Imanuddin R (2012) Monograph: allometric models for estimating tree biomass at various forest ecosystem types in Indonesia. Research and Development Center for Conservation and Rehabilitation Forestry Research and Development Agency, Bogor, Indonesia

    Google Scholar 

  • Kronseder K, Ballhorn U, Böhm V, Siegert F (2012) Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LIDAR data. Int J App Earth Obs 18:37–48

    Google Scholar 

  • Lähteenoja O, Page S (2011) High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia. J Geophys Res-Biogeo. doi:10.1029/2010JG001508

    Google Scholar 

  • Lähteenoja O, Ruokolainen K, Schulman L, Oinonen M (2009a) Amazonian peatlands: an ignored C sink and potential source. Global Change Biol 15:2311–2320

    Google Scholar 

  • Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J (2009b) Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena 79:140–145

    Google Scholar 

  • Lähteenoja O, Reátegui YR, Räsänen M, del Castillo TD, Oinonen M, Page SE (2012) The large Amazonian peatland carbon sink in the subsiding Pastaza-Marañón foreland basin, Peru. Glob Change Biol 18:164–178

    Google Scholar 

  • Lähteenoja O, Flores B, Nelson B (2013) Tropical peat accumulation in Central Amazonia. Wetlands 33:495–503

    Google Scholar 

  • Langner A, Miettinen J, Siegert F (2007) Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Global Change Biol 13:2329–2340

    Google Scholar 

  • Larjavaara M, Muller-Landau HC (2011) Cross-section mass: an improved basis for woody debris necromass inventory. Silva Fenn 45:291–298

    Google Scholar 

  • Lawson IT, Jones TD, Kelly TJ, Coronado ENH, Roucoux KH (2014) The geochemistry of Amazonian peats. Wetlands. doi:10.1007/s13157-014-0552-z

    Google Scholar 

  • Lee G (2000) An analysis of human impact on humid, tropical forests in Jambi, Indonesia using satellite images. Proceedings IGARSS 2000 I-VI, pp 1963–1965

  • Lee H, Beighley RE, Alsdorf D, Jung HC, Shum CK, Duan J, Guo J, Yamazaki D, Andreadis K (2011) Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sens Environ 115:3530–3538

    Google Scholar 

  • Letcher SG, Chazdon RL (2009) Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northeastern Costa Rica. Biotropica 41:608–617

    Google Scholar 

  • Lewis SL, Brando PM, Phillips OL, van der Heijden GM, Nepstad D (2011) The 2010 amazon drought. Science 331:554

    CAS  PubMed  Google Scholar 

  • Li H, Mausel P, Brondizio E, Deardorff D (2010) A framework for creating and validating a non-linear spectrum-biomass model to estimate the secondary succession biomass in moist tropical forests. ISPRS J Photogramm 65:241–254

    Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosci Discuss 5:1379–1419

    Google Scholar 

  • Mäkiränta P, Minkkinen K, Hytönen J, Laine J (2008) Factors causing temporal and spatial variation in heterotrophic and rhizospheric components of soil respiration in afforested organic soil croplands in Finland. Soil Biol Biochem 40:1592–1600

    Google Scholar 

  • Malhi Y, Phillips OL, Lloyd J, Baker T, Wright J, Almeida S, Arroyo L, Frederiksen T, Grace J, Higuchi N, Killeen T, Laurance W, Leaño C, Lewis S, Meir P, Monteagudo A, Neill D, Vargas PN, Panfil SN, Patiño SN, Pitman N, Quesada CA, Rudas A-L, Salomão R, Saleska S, Silva N, Silveira M, Sombroek WG, Valencia R, Martínez RV, Vieira ICG, Vinceti B (2002) An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J Veg Sci 13:439–450

    Google Scholar 

  • Manly BFJ (2007) Randomization, bootstrap and Monte Carlo methods in biology. Chapman and Hall, Boca Raton

    Google Scholar 

  • Melling L, Hatano R, Goh KJ (2005a) Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus 57B:1–11

    CAS  Google Scholar 

  • Melling L, Hatano R, Goh KJ (2005b) Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Biol Biochem 37:1445–1453

    CAS  Google Scholar 

  • Metcalfe DB, Meir P, Aragão LEOC, Malhi Y, da Costa ACL, Braga A, Gonçalves PHL, de Athaydes J, de Almeida SS, Williams M (2007) Factors controlling spatio-temporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon. J Geophys Res-Biogeo 112:G04001

    Google Scholar 

  • Metcalfe DB, Meir P, Aragão LEO, da Costa ACL, Braga AP, Gonçalves PHL, de Athaydes JS Jr, de Almeida SS, Dawson LA, Mahli Y, Williams M (2008) The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil 311:189–199

    CAS  Google Scholar 

  • Miettinen J, Liew SC (2010) Degradation and development of peatlands in peninsular Malaysia and in the islands of Sumatra and Borneo since 1990. Land Degrad Dev 21:285–296

    Google Scholar 

  • Miettinen J, Hooijer A, Shi C, Tollenaar D, Vernimmen R, Liew SC, Malins C, Page SE (2012) Extent of industrial plantations on Southeast Asian peatlands in 2010 with analysis of historical expansion and future projections. Glob Change Biol Bioenergy 4:908–918

    Google Scholar 

  • Mitchard ETA, Saatchi SS, White LJT, Abernethy KA, Jeffery KJ, Lewis SL, Collins M, Lefsky MA, Leal ME, Woodhouse IH, Meir P (2012) Mapping tropical forest biomass with radar and spaceborne LiDAR: overcoming problems of high biomass and persistent cloud. Biogeosciences 9:179–191

    Google Scholar 

  • Mitsch WJ, Nahlik A, Wolski P, Bernal B, Zhang L, Ramberg L (2010) Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetl Ecol Manage 18:573–586

    CAS  Google Scholar 

  • Moore S, Gauci V, Evans CD, Page SE (2011) Fluvial organic carbon losses from a Bornean blackwater river. Biogeosciences 8:901–909

    CAS  Google Scholar 

  • Moore R, Evans CD, Page SE, Garnett MH, Jones TG, Freeman C, Hooijer A, Wiltshire AJ, Limin SH, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493:660–663

    CAS  PubMed  Google Scholar 

  • Murdiyarso D, Hergoualc’h K, Verchot LV (2010) Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proc Natl Acad Sci USA 107:19655–19660

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagano T, Osawa K, Ishida T, Sakai K, Vijarnsorn P, Jongskul A, Phetsuk S, Waijaroen S, Yamanoshita T, Norisada M, Kojima K (2013) Subsidence and soil CO2 efflux in tropical peatland in southern Thailand under various water table and management conditions. Mires Peat 11: Art. 6. http://www.mires-and-peat.net/pages/volumes/map11/map1106.php. Accessed 24 Dec 2014

  • Neill C (1992) Comparison of soil coring and ingrowth methods for measuring belowground production. Ecology 73:1918–1921

    Google Scholar 

  • Nelson DW, Sommers LE, Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (ed) Methods of soil analysis. Part 3—chemical methods. Soil Science Society of America/American Society of Agronomy, Madison, Wisconsin, pp 961–1010

    Google Scholar 

  • Nepstad DC, Moutinho P, Dias-Filho MB, Davidson E, Cardinot G, Markewitz D, Figueiredo R, Vianna N, Chambers J, Ray D, Guerreiros JB, Lefebvre P, Sternberg L, Moreira M, Barros L, Ishida FY, Tohlver I, Belk E, Kalif K, Schwalbe K (2002) The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. J Geophys Res-Atmos 107(D20):8085

    Google Scholar 

  • Nilsson M, Sagerfors J, Buffam I, Laudon H, Eriksson T, Grelle A, Klemedtsson L, Weslien P, Lindroth A (2008) Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire—a significant sink after accounting for all C-fluxes. Global Change Biol 14:2317–2332

    Google Scholar 

  • Nottingham AT, Turner BL, Winter K, van der Heijden MGA, Tanner EVJ (2011) Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytol 186:957–967

    Google Scholar 

  • Page SE, Rieley JO, Shotyk ØW, Weiss D (1999) Interdependence of peat and vegetation in a tropical peat swamp forest. Philos T R Soc B 354:1885–1897

    CAS  Google Scholar 

  • Page SE, Seigert F, Rieley JO, Boehm H-DV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65

    CAS  PubMed  Google Scholar 

  • Page SE, Wüst RAJ, Weiss D, Rieley JO, Shotyk W, Limin SH (2004) A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quat Sci 19:25–635

    Google Scholar 

  • Page SE, Morrison R, Malins C, Hooijer A, Rieley JO, Jauhianen J (2011a) Review of peat surface greenhouse gas emissions from oil palm plantations in Southeast Asia. White Paper No. 15. International Committee on Clean Transportation (ICTT), Washington DC, p 76

  • Page SE, Rieley JO, Banks CJ (2011b) Global and regional importance of the tropical peatland carbon pool. Global Change Biol 17:798–818

    Google Scholar 

  • Pangala SR, Moore S, Hornibrook ERC, Gauci V (2013) Trees are major conduits for methane egress from tropical forested wetlands. New Phytol 197:524–531

    PubMed  Google Scholar 

  • Parry LE, West LJ, Holden J, Chapman PJ (2014) Evaluating approaches for estimating peat depth. J Geophys Res Biogeosci 119:567–576

    Google Scholar 

  • Phillips S, Rouse GE, Bustin RM (1997) Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panamá. Palaeogeogr Palaeoclim Palaeoecol 128:301–338

    Google Scholar 

  • Phillips OL, Baker TR, Feldpausch T, Brienen R (2009) RAINFOR field manual for plot establishment and remeasurement. http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_June_2009_ENG.pdf. Accessed 24 Dec 2014

  • Phua MH, Tsuyuki S, Lee JS, Sasakawa H (2007) Detection of burned peat swamp forest in a heterogeneous tropical landscape: a case study of the Klias Peninsula, Sabah, Malaysia. Landsc Urban Plan 82:103–116

    Google Scholar 

  • Pitkänen A, Turunen J, Simola H (2011) Comparison of different types of peat corers in volumetric sampling. Suo 62:51–57

    Google Scholar 

  • Price JS (2003) Role and character of seasonal peat soil deformation on the hydrology of undisturbed and cutover peatlands. Water Resour Res 39:1241

    Google Scholar 

  • Qualls RG, Haines BL (1990) The influence of humic substances on the aerobic decomposition of submerged leaf litter. Hydrobiologia 206:133–138

    CAS  Google Scholar 

  • Rakwatin P, Longepe N, Isoguchi O, Shimada M (2009) Potential of ALOS PALSAR 50 m mosaic product for land cover classification in tropical rain forest. Proceedings of the Asian conference on remote sensing (ACRS)

  • Rosenqvist Å, Birkett CM (2002) Evaluation of JERS-1 SAR mosaics for hydrological applications in the Congo river basin. Int J Remote Sens 23:1283–1302

    Google Scholar 

  • Roucoux KH, Lawson IT, Jones TD, Baker TR, Coronado EN, Gosling WD, Lähteenoja O (2013) Vegetation development in an Amazonian peatland. Palaeogeogr Palaeoecol 374:242–255

    Google Scholar 

  • Roulet NT, Lafleurs PM, Richard PJH, Moore TR, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biol 13:397–411

    Google Scholar 

  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci USA 108:9899–9904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheng Y, Smith LC, MacDonald GM, Kremenetski KV, Frey KE, Velichko AA, Lee M, Beilman DW, Dubinin P (2004) A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Glob Biogeochem Cycles 18:GB3004

    Google Scholar 

  • Shimada S, Takahashi H, Haraguchi A, Kaneko M (2001) The carbon content characteristics of tropical peats in Central Kalimantan, Indonesia: estimating their spatial variability in density. Biogeochemistry 53:249–267

    CAS  Google Scholar 

  • Shimamura T, Momose K (2005) Organic matter dynamics control plant species coexistence in a tropical peat swamp forest. Philos T R Soc B272:1503–1510

    Google Scholar 

  • Sjögersten S, Cheesman AW, Lopez O, Turner BL (2011) Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104:147–163

    Google Scholar 

  • Sjögersten S, Black CR, Evers S, Hoyos-Santillan J, Wright EL, Turner BL (2014) Tropical wetlands: a missing link in the global carbon cycle? Glob Biogeochem Cycles. doi:10.1002/2014GB004844

    Google Scholar 

  • Slater LD, Reeve A (2002) Investigating peatland stratigraphy and hydrogeology using integrated electrical geophysics. Geophysics 67:365–378

    Google Scholar 

  • Sulistiyanto Y (2004) Nutrient dynamics in different sub-types of peat swamp forest in Central Kalimantan, Indonesia. Unpublished PhD thesis, University of Nottingham

  • Sundari S, Hirano T, Yamada H, Kusin K, Limin S (2012) Effect of groundwater level on soil respiration in tropical peat swamp forests. J Agric Meteorol 68:121–134

    Google Scholar 

  • Suzuki S, Ishida T, Nagano T, Waijaroen S (1999) Influences of deforestation on carbon balance in a natural tropical peat swamp forest in Thailand. Environ Control Biol 37:115–128

    Google Scholar 

  • Symbula M, Day FP Jr (1988) Evaluation of two methods for estimating belowground production in a freshwater swamp forest. Am Midl Nat 120:405–415

    Google Scholar 

  • Tie YL, Esterle JS (1992) Formation of lowland peat domes in Sarawak, Malaysia. In: Aminuddin BY, Tan SL, Aziz B, Samy J, Salmah Z, Siti Petimah H, Choo ST (eds) Proceedings of the international symposium on tropical peatland, 6–10 May 1991, Kuching, Sarawak, Malaysia. Kuala Lumpur: Malaysian Agricultural Research and Development Institute, pp 81–89

  • Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland–application to boreal and subarctic regions. Holocene 12:69–80

    Google Scholar 

  • van Asselen S, Roosendaal C (2009) A new method for determining the bulk density of uncompacted peat from field settings. J Sediment Res 79:918–922

    Google Scholar 

  • Vasander H, Kettunen A (2006) Carbon in boreal peatlands. In: Wieder RK, Vitt DH (eds) Ecological studies, vol 188., Boreal peatland ecosystemsSpringer, Berlin, pp 165–194

    Google Scholar 

  • Waddell KL (2002) Sampling coarse woody debris for multiple attributes in extensive resource inventories. Ecol Indic 1:139–153

    Google Scholar 

  • Wahyunto, Ritung S, Subagjo H (2003) Peta Luas Sebaran Lahan Gambut dan Kandungan Kargon di Pulau Sumatera/maps of area of peatland distribution and carbon content in Sumatera, 1990–2002. Wetlands International—Indonesia Programme Wildlife Habitat Canada (WHC), Bogor

    Google Scholar 

  • Wahyunto, Ritung S, Subagjo H (2004) Peta Sebaran Lahan Gambut, Luas dan Kandungan Karbon di Kalimantan/Map of Peatland Distribution Area and Carbon Content in Kalimantan, 2000–2002. Wetlands International—Indonesia Programme Wildlife Habitat Canada (WHC), Bogor

    Google Scholar 

  • Wahyunto, Heryanto B, Widiastuti HBdF (2006) Peta Sebaran Lahan Gambut, Luas dan Kandungan Karbon di Papua/Maps of Peatland Distribution, Area and Carbon Content in Papua, 2000–2001. Wetlands International—Indonesia Programme Wildlife Habitat Canada (WHC), Bogor

    Google Scholar 

  • Waldram MS (2014) Characterising disturbance in tropical peat swamp forest using satellite imaging radar. Unpublished PhD thesis. University of Leicester. http://hdl.handle.net/2381/28631. Accessed 24 Dec 2014

  • Warren MW, Kauffman JB, Murdiyarso D, Anshari G, Hergoualc’h K, Kurnianito S, Purbopuspito J, Gusmayanti E, Afifudin M, Rahajoe J, Alhamd L, Limin S, Iswandi A (2012) A cost-efficient method to assess carbon stocks in tropical peat soil. Biogeosciences 9:4477–4485

    CAS  Google Scholar 

  • Wheeler BD, Proctor MCF (2000) Ecological gradients, subdivisions and terminology of north-west European mires. J Ecol 88:187–203

    Google Scholar 

  • Wijedasa LS, Lahiru S, Sloan S, Michelakis D, Clements GR (2012) Overcoming limitations with Landsat imagery for mapping of peat swamp forests in Sundaland. Remote Sens 4:2595–2618

    Google Scholar 

  • Woodall CW, Monleon VJ (2008) Sampling protocol, estimation, and analysis procedures for the down woody materials indicator of the FIA program. USDA Forest Service, Newtown Square, Pennsylvania

    Google Scholar 

  • Wright HE Jr (1991) Coring tips. J Paleolimnol 6:37–49

    Google Scholar 

  • Wright HE, Mann DH, Glaser PH (1984) Piston corers for peat and lake sediments. Ecology 65:657–659

    Google Scholar 

  • Wright EL, Black CR, Cheesman AW, Drage T, Large D, Turner BL, Sjögersten S (2011) Contribution of subsurface peat to CO2 and CH4 fluxes in a neotropical peatland. Global Change Biol 17:2867–2881

    Google Scholar 

  • Wright EL, Black CR, Cheesman AW, Turner BL, Sjögersten S (2013a) Impact of simulated changes in water table depth on ex situ decomposition of leaf litter from a neotropical peatland. Wetlands 33:217–226

    Google Scholar 

  • Wright EL, Black CR, Turner BL, Sjögersten S (2013b) Diurnal and seasonal variation in CO2 and CH4 fluxes in a neotropical peatland. Global Change Biol. doi:10.1111/gcb.12330

    Google Scholar 

  • Wüst RA, Bustin RM (2004) Late Pleistocene and Holocene development of the interior peat-accumulating basin of tropical Tasek Bera, Peninsular Malaysia. Palaeogeogr Palaeoclim 211:241–270

    Google Scholar 

  • Wüst RA, Ward CR, Bustin RM, Hawke MI (2002) Characterization and quantification of inorganic constituents of tropical peats and organic-rich deposits from Tasek Bera (Peninsular Malaysia): implications for coals. Int J Coal Geol 49:215–249

    Google Scholar 

  • Wüst RA, Bustin RM, Lavkulich LM (2003) New classification systems for tropical organic-rich deposits based on studies of the Tasek Bera Basin, Malaysia. Catena 53:133–163

    Google Scholar 

  • Yoshioka T, Ueda S, Miyajima T, Wada E, Yoshida N, Sugimoto A, Vijarnsorn P, Boonprakub S (2002) Biogeochemical properties of a tropical swamp forest ecosystem in southern Thailand. Limnology 3:51–59

    CAS  Google Scholar 

  • Yu Z (2012) Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071–4085

    CAS  Google Scholar 

  • Yule CM, Gomez LN (2008) Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Wetl Ecol Manage 17:231–241

    Google Scholar 

Download references

Acknowledgments

We would like to thank A.J. Baird and G.T. Swindles for comments on an earlier version of the text, and the two anonymous reviewers for insightful comments that greatly improved this article. The workshops that led to this article were supported financially by the Universities of Leicester and Nottingham, and the Natural Environment Research Council-funded ‘Earth Observation Technology Cluster’ knowledge exchange initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. Lawson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawson, I.T., Kelly, T.J., Aplin, P. et al. Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes. Wetlands Ecol Manage 23, 327–346 (2015). https://doi.org/10.1007/s11273-014-9402-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-014-9402-2

Keywords

Navigation