Skip to main content
Log in

Potential distribution of aquatic invasive alien plants, Eichhornia crassipes and Salvinia molesta under climate change in Sri Lanka

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

A Correction to this article was published on 28 June 2021

This article has been updated

Abstract

Eichhornia crassipes and Salvinia molesta are two of the world’s worst aquatic invasive alien plant Species (AIAPS) that have a major impact on the environment, agricultural production and food security. The aim of this study was to understand the current and potential distribution of E. crassipes and S. molesta under climate change in the tropical island of Sri Lanka. The MaxEnt species distribution modelling technique was used to generate predictive models using global distribution data and environmental variables. For future projections, the mean of two best performing climate models was used under two emissions scenarios, Representative Concentration Pathways (RCP) 4.5 and 8.5 for time periods 2050 and 2070. The study revealed that at present, the majority of the aquatic habitats of the country, particularly lowland areas, are vulnerable to the invasion of these two species; however, a striking difference was observed under future RCP scenarios. Aquatic habitats suitable for E. crassipes is predicted to decrease substantially by 2050 and increase again until 2070. The suitable habitats of S. molesta are likely to decrease sharply until 2070. This study provides insights for decision-makers that climate change influences should be considered for long-term management of AIAPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary materials.

Change history

References

  • Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) Thin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541–545

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Anacker BL, Strauss SY (2014) The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proc R Soc B 281:20132980

    Article  PubMed  PubMed Central  Google Scholar 

  • Arp R, Fraser G, Hill M (2017) Quantifying the economic water savings benefit of water hyacinth (Eichhornia crassipes) control in the Vaalharts Irrigation Scheme. Water Sa 43:58–66

    Article  Google Scholar 

  • Barga SC, Dilts TE, Leger EA (2018) Contrasting climate niches among co-occurring subdominant forbs of the sagebrush steppe. Divers Distrib 24:1291–1307

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellard C, Jeschke JM, Leroy B, Mace GM (2018) Insights from modeling studies on how climate change affects invasive alien species geography. Ecol Evol 8:5688–5700. https://doi.org/10.1002/ece3.4098

    Article  PubMed  PubMed Central  Google Scholar 

  • Bock JH (1969) Productivity of the water hyacinth Eichhornia crassipes (Mart.). Solms Ecology 50:460–464

    Article  Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Modell 275:73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012

    Article  Google Scholar 

  • Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279

    Article  Google Scholar 

  • Central Bank of Sri Lanka (2018) Economic and social statistics of Sri Lanka. Central Bank of Sri Lanka Colombo, Sri Lanka

    Google Scholar 

  • Coetzee J, Hill M, Byrne M, Bownes A (2011) A review of the biological control programmes on Eichhornia crassipes (C. Mart.) Solms (Pontederiaceae), Salvinia molesta DS Mitch. (Salviniaceae), Pistia stratiotes L. (Araceae), Myriophyllum aquaticum (Vell.) Verdc.(Haloragaceae) and Azolla filiculoides Lam.(Azollaceae) in South Africa. Afr Entomol 19:451–468

    Article  Google Scholar 

  • Corea ASLE (2009) Distribution of Aquatic weeds and their impacts in Ampara district. Paper presented at the National Symposium on Invasive Alien Species, Negombo, Sri Lanka, 21–22 May, 2009

  • Crossman ND, Bryan BA, Summers DM (2012) Identifying priority areas for reducing species vulnerability to climate change. Divers Distrib 18:60–72

    Article  Google Scholar 

  • Dharmasena P (2020) Cascaded tank-village system: present status and prospects. Agricultural Research for Sustainable Food Systems in Sri Lanka. Springer, Berlin, pp 63–75

    Chapter  Google Scholar 

  • Doeleman JA (1989) Biological control of Salvinia molesta in Sri Lanka: an assessment of costs and benefits. Australian Centre for International Agricultural Research, Canberra, Australia

    Google Scholar 

  • Dormann CF et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Duan R-Y, Kong X-Q, Huang M-Y, Fan W-Y, Wang Z-G (2014) The predictive performance and stability of six species distribution models. PLoS ONE. https://doi.org/10.1371/journal.pone.0112764

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudgeon D et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  PubMed  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139. https://doi.org/10.1016/S0169-5347(98)01554-7

    Article  CAS  PubMed  Google Scholar 

  • Elith J et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • EPPO (2017) Salvinia molesta D.S. Mitch. OEPP/EPPO Bull 47:531–536. https://doi.org/10.1111/epp.12428

    Article  Google Scholar 

  • FAO (2020) The problem of water weeds in Sri Lanka. Food and Agriculture Organization of the United Nations. http://www.fao.org/agriculture/crops/thematic-sitemap/theme/biodiversity/weeds/issues/sri-ww/en/. Accessed 19 April 2020

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Gallardo B, Zieritz A, Aldridge DC (2015) The importance of the human footprint in shaping the global distribution of terrestrial, freshwater and marine invaders. PLoS ONE 10:e0125801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gallardo B, Aldridge DC (2015) Is Great Britain heading for a Ponto-Caspian invasional meltdown? J Appl Ecol 52:41–49

    Article  Google Scholar 

  • Gallardo B, Aldridge DC, Frid C (2013) The ‘dirty dozen’: socio-economic factors amplify the invasion potential of 12 high-risk aquatic invasive species in Great Britain and Ireland. J Appl Ecol 50:757–766. https://doi.org/10.1111/1365-2664.12079

    Article  Google Scholar 

  • Gallardo B, Clavero M, Sánchez MI, Vilà M (2016) Global ecological impacts of invasive species in aquatic ecosystems. Glob Chang Biol 22:151–163

    Article  PubMed  Google Scholar 

  • Gamage NP, Asaeda T (2005) Decomposition and mineralization of Eichhornia crassipes litter under aerobic conditions with and without bacteria. Hydrobiologia 541:13–27

    Article  CAS  Google Scholar 

  • Geist J (2011) Integrative freshwater ecology and biodiversity conservation. Ecol Indic 11:1507–1516

    Article  Google Scholar 

  • Gillard M, Thiébaut G, Deleu C, Leroy B (2017) Present and future distribution of three aquatic plants taxa across the world: decrease in native and increase in invasive ranges. Biol Invasions 19:2159–2170

    Article  Google Scholar 

  • Giorgetta MA et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5:572–597

    Article  Google Scholar 

  • Goberville E, Beaugrand G, Hautekèete NC, Piquot Y, Luczak C (2015) Uncertainties in the projection of species distributions related to general circulation models. Ecol Evol 5:1100–1116

    Article  PubMed  PubMed Central  Google Scholar 

  • Havel JE, Kovalenko KE, Thomaz SM, Amalfitano S, Kats LB (2015) Aquatic invasive species: challenges for the future. Hydrobiologia 750:147–170

    Article  PubMed  PubMed Central  Google Scholar 

  • Holm LG, Weldon LW, Blackburn RD (1969) Aquatic Weeds. Science 166:699–709

    Article  CAS  PubMed  Google Scholar 

  • Ibanez I, Silander J Jr, Allen JM, Treanor SA, Wilson A (2009) Identifying hotspots for plant invasions and forecasting focal points of further spread. J Appl Ecol 46:1219–1228. https://doi.org/10.1111/j.1365-2664.2009.01736.x

    Article  Google Scholar 

  • IPBES (2018) The IPBES regional assessment report on biodiversity and ecosystem services for Asia and the Pacific. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany

    Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland

  • Jia J, Dai Z, Li F, Liu Y (2016) How will global environmental changes affect the growth of alien plants? Front Plant Sci 7:1623

    Article  PubMed  PubMed Central  Google Scholar 

  • Julien M (2012) Salvinia molesta D.S. Mitchell – salvinia

  • Kariyawasam CS, Kumar L, Ratnayake SS (2019a) Invasive plant species establishment and range dynamics in Sri Lanka under climate change. Entropy 21:571. https://doi.org/10.3390/e21060571

    Article  PubMed Central  Google Scholar 

  • Kariyawasam CS, Kumar L, Ratnayake SS (2019b) Invasive plants distribution modeling: a tool for tropical biodiversity conservation with special reference to Sri Lanka tropical conservation. Science 12:1–12. https://doi.org/10.1177/1940082919864269

    Article  Google Scholar 

  • Kariyawasam CS, Kumar L, Kogo BK, Ratnayake SS (2021) Long-term changes of aquatic invasive plants and implications for future distribution: a case study using a tank cascade system in Sri Lanka. Climate 9:31. https://doi.org/10.3390/cli9020031

    Article  Google Scholar 

  • Kotagama S, Bambaradeniya C (2006) An overview of the wetlands of Sri Lanka and their conservation significance. Natl Wetl Dir Sri Lanka 7–16:34

    Google Scholar 

  • Koutika L, Rainey H (2015) A review of the invasive, biological and beneficial characteristics of aquatic species Eichhornia crassipes and Salvinia molesta. Appl Ecol Environ Res 13:263–275

    Google Scholar 

  • Kriticos DJ, Brunel S (2016) Assessing and managing the current and future pest risk from water hyacinth, (Eichhornia crassipes), an invasive aquatic plant threatening the environment and water security. PLoS ONE 11:e0120054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lembrechts JJ, Rossi E, Milbau A, Nijs I (2018) Habitat properties and plant traits interact as drivers of non-native plant species’ seed production at the local scale. Ecol Evol 8:4209–4223

    Article  PubMed  PubMed Central  Google Scholar 

  • Leroy B, Meynard CN, Bellard C, Courchamp F (2016) virtualspecies, an R package to generate virtual species distributions. Ecography 39:599–607

    Article  Google Scholar 

  • Leroy B, Delsol R, Hugueny B, Meynard CN, Barhoumi C, Barbet-Massin M, Bellard C (2018) Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J Biogeogr 45:1994–2002

    Article  Google Scholar 

  • Liu C, Newell G, White M (2016) On the selection of thresholds for predicting species occurrence with presence-only data. Ecol Evol 6:337–348

    Article  PubMed  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world's worst invasive alien species: a selection from the global invasive species database vol 12. Invasive Species Specialist Group Auckland

  • Madsen JD, Wersal RM (2008) Growth regulation of Salvinia molesta by pH and available water column nutrients. J Freshw Ecol 23:305–313

    Article  CAS  Google Scholar 

  • Mainka SA, Howard GW (2010) Climate change and invasive species: double jeopardy Integrative. Zoology 5:102–111

    Google Scholar 

  • Mani M, Bandyopadhyay S, Chonabayashi S, Markandya A, Mosier T (2018) South Asia’s hotspots: The impact of temperature and precipitation changes on living standards. The World Bank, Washington, DC

    Book  Google Scholar 

  • Mansor M (1996) Noxious floating weeds of Malaysia. Hydrobiologia 340:121–125

    Article  Google Scholar 

  • McFarland D, Nelson L, Grodowitz M, Smart R, Owens C (2004) Salvinia molesta D. S. Mitchell (Giant Salvinia) in the United States: a review of species ecology and approaches to management. APCRP Technical Notes Collection (ERDC/EL SR-04-2) US Army Engineer Research and Development Center, Vicksburg, MS 33pp

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Article  Google Scholar 

  • Mishra V, Kumar D, Ganguly AR, Sanjay J, Mujumdar M, Krishnan R, Shah RD (2014) Reliability of regional and global climate models to simulate precipitation extremes over India. J Geophys Res 119:9301–9323

    Article  Google Scholar 

  • Mod HK, Scherrer D, Luoto M, Guisan A (2016) What we use is not what we know: environmental predictors in plant distribution models. J Veg Sci 27:1308–1322

    Article  Google Scholar 

  • MoMD&E (2015) Invasive alien species in Sri Lanka: training manual for managers and policymakers. Ministry of Mahaweli Development & Environment, Colombo, Sri Lanka

    Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5:1198–1205

    Article  Google Scholar 

  • Patel S (2012) Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Rev Environ Sci Bio-Technol 11:249–259

    Article  Google Scholar 

  • Paul JR, Morton C, Taylor CM, Tonsor SJ (2009) Evolutionary time for dispersal limits the extent but not the occupancy of species’ potential ranges in the tropical plant genus Psychotria (Rubiaceae). Am Nat 173:188–199

    Article  PubMed  Google Scholar 

  • Penfound WT, Earle TT (1948) The biology of the water hyacinth. Ecol Monogr 18:447–472

    Article  Google Scholar 

  • Phillips S, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Phillips SJ (2017) A Brief Tutorial on Maxent. http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 4 Jun 2020

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of Maxent. Ecography 40:887–893

    Article  Google Scholar 

  • Pramanik M, Paudel U, Mondal B, Chakraborti S, Deb P (2018) Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Clim Risk Manag 19:94–105

    Article  Google Scholar 

  • Ratnayake RSS, Kumar L, Kariyawasam CS (2020) Neglected and underutilized fruit species in Sri Lanka: prioritisation and understanding the potential distribution under climate change. Agronomy 10:34. https://doi.org/10.3390/agronomy10010034

    Article  Google Scholar 

  • Ricciardi A, MacIsaac HJ (2011) Impacts of biological invasions on freshwater ecosystems. In: Richardson DM (ed) Fifty years of invasion ecology: the legacy of Charles Elton, vol 1. Blackwell Publishing Ltd. West Sussex, UK, pp 211–224

    Google Scholar 

  • Rodríguez-Rey M, Consuegra S, Börger L, de Leaniz CG (2019) Improving species distribution modelling of freshwater invasive species for management applications. PLoS ONE 14:e0217896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romero-Alvarez D, Escobar LE, Varela S, Larkin DJ, Phelps NB (2017) Forecasting distributions of an aquatic invasive species (Nitellopsis obtusa) under future climate scenarios. PLoS ONE 12:e0180930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Room P, Fernando I (1992) Weed invasions countered by biological control: Salvinia molesta and Eichhornia crassipes in Sri Lanka. Aquat Bot 42:99–107

    Article  Google Scholar 

  • Room P, Thomas P (1986) Nitrogen, phosphorus and potassium in Salvinia molesta Mitchell in the field: effects of weather, insect damage, fertilizers and age. Aquat Bot 24:213–232

    Article  Google Scholar 

  • Room PM, Gunatilake GA, Shivanathan P, Fernando IVS (1989) Control of Salvinia molesta in Sri Lanka by Cyrtobagous salviniae. Paper presented at the VII International symposium on biological control of weeds, Rome, Italy

  • Runyon JB, Butler JL, Friggens MM, Meyer SE, Sing SE (2012) Invasive species and climate change. In: Climate change in Grasslands, Shrublands, and Deserts of the Interior American West. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, Gen. Tech. Rep. RMRS-GTR-285

  • Sabeerali C, Rao SA, Dhakate A, Salunke K, Goswami B (2015) Why ensemble mean projection of south Asian monsoon rainfall by CMIP5 models is not reliable? Clim Dyn 45:161–174

    Article  Google Scholar 

  • Sale P, Orr P, Shell G, Erskine D (1985) Photosynthesis and growth rates in Salvinia molesta and Eichhornia crassipes. J Appl Ecol 22:125–137

    Article  Google Scholar 

  • Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. Bioscience 52:891–904

    Article  Google Scholar 

  • Secretariat of the Convention on Biological Diversity (2014) Global Biodiversity Outlook 4. Secretariat of the Convention on Biological Diversity, Montréal

    Google Scholar 

  • Shabani F, Tehrany MS, Solhjouy-Fard S, Kumar L (2018) A comparative modeling study on non-climatic and climatic risk assessment on Asian Tiger Mosquito (Aedes albopictus). PeerJ 6:e4474

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabani F, Kumar L, Ahmadi M (2018a) Assessing accuracy methods of species distribution models: AUC, specificity, sensitivity and the True Skill Statistic. Glob J Hum Soc Sci 18

  • Sharmila S, Joseph S, Sahai A, Abhilash S, Chattopadhyay R (2015) Future projection of Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Glob Planet Change 124:62–78

    Article  Google Scholar 

  • Somodi I, Lepesi N, Botta-Dukát Z (2017) Prevalence dependence in model goodness measures with special emphasis on true skill statistics. Ecol Evol 7:863–872

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperber KR et al (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744

    Article  Google Scholar 

  • Stephens KL, Dantzler-Kyer ME, Patten MA, Souza L (2019) Differential responses to global change of aquatic and terrestrial invasive species: evidences from a meta-analysis. Ecosphere 10:e02680

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Thomaz SM, Kovalenko KE, Havel JE, Kats LB (2015) Aquatic invasive species: general trends in the literature and introduction to the special issue. Hydrobiologia 746:1–12

    Article  Google Scholar 

  • Van der Heide T, Roijackers RM, Van Nes EH, Peeters ET (2006) A simple equation for describing the temperature dependent growth of free-floating macrophytes. Aquat Bot 84:171–175

    Article  Google Scholar 

  • Van Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Change 109:5

    Article  Google Scholar 

  • Venter O et al (2016) Global terrestrial Human Footprint maps for 1993 and. Sci Data 3:1–10

    Article  Google Scholar 

  • Venter O et al (2018) Last of the Wild Project, Version 3 (LWP-3): 2009 Human Footprint, 2018 Release. NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY

  • Vilela B (2019) Niche overlap: update to Silva et al. 2014 supplementary matterial. https://rmacroecology.netlify.app/2019/01/21/niche-overlap-update-to-silva-et-al-2014-supplementary-matterial/. Accessed 28 Apr 2020

  • Watanabe M et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335

    Article  Google Scholar 

  • Wilson JR, Holst N, Rees M (2005) Determinants and patterns of population growth in water hyacinth. Aquat Bot 81:51–67

    Article  Google Scholar 

  • Young N, Carter L, Evangelista P (2011) A MaxEnt model v3. 3.3 e tutorial (ArcGIS v10). http://ibis.colostate.edu/webcontent/ws/coloradoview/tutorialsdownloads/a_maxent_model_v7.pdf. Accessed 10 Mar 2019

  • Zhang Z, Capinha C, Weterings R, McLay CL, Xi D, Lü H, Yu L (2019) Ensemble forecasting of the global potential distribution of the invasive Chinese mitten crab. Erioch Sin Hydrobiol 826:367–377

    Article  Google Scholar 

  • Ziska LH, Blumenthal DM, Runion GB, Hunt ER, Diaz-Soltero H (2011) Invasive species and climate change: an agronomic perspective. Clim Chang 105:13–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design and analysis. The draft manuscript was written by CSK. LK and SSR reviewed it.

Corresponding author

Correspondence to Champika S. Kariyawasam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kariyawasam, C.S., Kumar, L. & Ratnayake, S.S. Potential distribution of aquatic invasive alien plants, Eichhornia crassipes and Salvinia molesta under climate change in Sri Lanka. Wetlands Ecol Manage 29, 531–545 (2021). https://doi.org/10.1007/s11273-021-09799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-021-09799-4

Keywords

Navigation