Skip to main content

Advertisement

Log in

Fermentation of d-glucose and d-xylose mixtures by Candida tropicalis NBRC 0618 for xylitol production

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The fermentation of d-glucose and d-xylose mixtures by the yeast Candida tropicalis NBRC 0618 has been studied under the most favourable operation conditions for the culture, determining the most adequate initial proportion in these sugars for xylitol production. In all the experiments a synthetic culture medium was used, with an initial total substrate concentration of 25 g L−1, a constant pH of 5.0 and a temperature of 30 °C. From the experimental results, it was deduced that the highest values of specific rates of production and of overall yield in xylitol were achieved for the mixtures with the highest percentage of d-xylose, specifically in the culture with the initial d-glucose and d-xylose concentrations of 1 and 24 g L−1, respectively, with an overall xylitol yield of 0.28 g g−1. In addition, the specific rates of xylitol production declined over the time course of the culture and the formation of this bioproduct was favoured by the presence of small quantities of d-glucose. The sum of the overall yield values in xylitol and ethanol for all the experiments ranged from 0.26 to 0.56 g bioproduct/g total substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

b :

Biomass productivity, g biomass L−1 h−1

E :

Ethanol concentration, g L−1

E 0 :

Initial ethanol concentration, g L−1

g 0 :

Initial d-glucose concentration, g L−1

Q E :

Volumetric ethanol productivity, g ethanol L−1 h−1

q g :

d-glucose specific consumption rate by integral method, g substrate (g biomass)−1 h−1

\( q_g^D \) :

d-glucose specific consumption rate by differential method, g substrate (g biomass)−1 h−1

q s :

d-xylose specific consumption rate by integral method, g substrate (g biomass)−1 h−1

\( q_s^D \) :

d-xylose specific consumption rate by differential method, g substrate (g biomass)−1 h−1

\( q_{S_T } \) :

Substrate specific consumption rate, g substrate (g biomass)−1 h−1

Q Xy :

Volumetric xylitol productivity, g xylitol L−1 h−1

\( q_{Xy}^{D} \) :

Xylitol specific production rate by differential method, g xylitol (g biomass)−1 h−1

s 0 :

Initial d-xylose concentration, g L−1

s T :

Substrate concentration, g L−1

\( s_{{T}_{0}}\) :

Initial substrate concentration, g L−1

t :

Time, h

x :

Biomass concentration, g L−1

x 0 :

Initial biomass concentration, g L−1

Xy :

Xylitol concentration, g L−1

Xy max :

Maximum xylitol concentration, g L−1

\( Y_{{E/s}_{T}}^{O} \) :

Overall ethanol yield, g ethanol (g substrate)−1

\( Y_{x/g}^{O} \) :

Overall biomass yield for the zone of d-glucose consumption, g biomass (g substrate)−1

\( Y_{x/s}^{O} \) :

Overall biomass yield for the zone of d-xylose consumption, g biomass (g substrate)−1

\( Y_{Xy/s_T } \) :

Instantaneous biomass yield, g biomass (g substrate)−1

\( Y_{x/s_T }^O \) :

Overall biomass yield, g biomass (g substrate)−1

\( Y_{Xy/s_T }^{} \) :

Instantaneous xylitol yield, g xylitol (g substrate)−1

\( Y_{Xy/s}^O \) :

Overall xylitol yield, g xylitol (g d-xylose)−1

\( Y_{Xy/s_T }^O \) :

Overall xylitol yield, g xylitol (g substrate)−1

μm :

maximum specific growth rate, h−1

References

  • Agblevor FA, Walthers T, Hensirisak P (2001) Model compound studies: influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Appl Biochem Biotechnol 92:423–435

    Google Scholar 

  • Azuma M, Ikeuchi T, Kiritani R, Kato J, Ooshima H (2000) Increase in xylitol production by Candida tropicalis upon addition of salt. Biomass Bioenergy 19:129–135

    Article  CAS  Google Scholar 

  • Bergmeyer HU, Möllering H (1974) Acetic acid. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 3. Verlag Chemie, Weinheim pp 1196–1201

    Google Scholar 

  • Beutler HO (1984) Ethanol In: Bergmeyer HU (ed.) Methods of Enzymatic Analysis, vol 6. Verlag Chemie, Weinheim, pp 598–606

  • Beutler HO, Becker J (1977) Enzymatische Bestimmung von D-Sorbit und Xylit in Lebensmitteln. Deutsche Lebensmittel-Rundschau 6:182–187

    Google Scholar 

  • Borak Co. Ltd. (2000) Xylose fermentation method for xylitol manufacture—involves using novel strain of Candida tropicalis. JP Patent 3007615-B1

  • Detroy RW, Cunningham RL, Herman AI (1982) Fermentation of wheat straw hemicelluloses to ethanol by Pachysolen tannophilus. Biotechnol Bioeng Symp 12:81–89

    CAS  Google Scholar 

  • Gong CS, Chen LF, Flickinger MC, Chiang LC, Tsao GT (1981) Production of ethanol from d-xylose by using d-xylose isomerase and yeasts. Appl Environ Microbiol 41:430–436

    CAS  Google Scholar 

  • Ikeuchi T, Kiritani R, Azuma M, Ooshima H (2000) Effect of d-glucose on induction of xylose reductase and xylitol dehydrogenase in Candida tropicalis in the presence of NaCl. J Basic Microbiol 40:167–175

    Article  CAS  Google Scholar 

  • Jeffries TW (1982) A comparison of Candida tropicalis and Pachysolen tannophilus for conversion of xylose to ethanol. Biotechnol Bioeng Symp 12:103–110

    CAS  Google Scholar 

  • Kastner JR, Eiteman MA, Lee SA (2001) Glucose repression of xylitol production in Candida tropicalis mixed-sugar fermentations. Biotechnol Lett 23:1663–1667

    Article  CAS  Google Scholar 

  • Kim JH, Han KC, Koh YH (2002) Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. Appl Microbiol Biotechnol 29:16–19

    CAS  Google Scholar 

  • Kim JH, Ryu YW, Seo JH (1999) Analysis and optimization of a two-substrate fermentation for xylitol production using Candida tropicalis. J Ind Microbiol Biotechnol 22:181–186

    Article  CAS  Google Scholar 

  • Lindegren CC, Nagai S, Nagai H (1958) Induction of respiratory deficiency in yeast by manganese, copper, cobalt and nickel. Nature 182:446–448

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Oh DK, Kim SY (1998) Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl Microbiol Biotechnol 50:419–425

    Article  CAS  Google Scholar 

  • Parajó JC, Domínguez H, Domínguez JM (1998) Biotechnological production of xylitol. Part 2: operation in culture media made with commercial sugars. Biores Technol 65:201–212

    Google Scholar 

  • Pepper T, Olinger PM (1988) Xylitol in sugar-free confections. Food Technol 42:98–106

    Google Scholar 

  • Pfeifer MJ, Silva SS, Felipe MGA, Roberto IC, Mancilha IM (1996) Effect of culture conditions on xylitol production by Candida guilliermondii FTI 20037. Appl Biochem Biotechnol 57–58:423–430

    Article  Google Scholar 

  • Rao RS, Prakasham RS, Prasad KK, Rajesham S, Sarma PN, Rao LV (2004) Xylitol production by Candida sp.: parameter optimization using Taguchi approach. Process Biochem 39:951–956

    Article  CAS  Google Scholar 

  • Rao RS, Jyothi PCh, Prakasham RS, Sarma PN, Rao LV (2006) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Biores Technol 97:1974–1978

    Article  CAS  Google Scholar 

  • Roseiro JC, Peito MA, Girio FM, Amaral-Collaço T (1991) The effects of the oxygen transfer coefficient and substrate concentration on the xylose fermentation by Debaryomyces hansenii. Arch Microbiol 156:484–490

    CAS  Google Scholar 

  • Sánchez S, Bravo V, Castro E, Moya AJ, Camacho F (1998) The production of xylitol from d-xylose by fermentation with Hansenula polymorpha. Appl Microbiol Biotechnol 50:608–611

    Article  Google Scholar 

  • Sánchez S, Bravo V, Castro E, Moya AJ, Camacho F (2002) The fermentation of mixtures of d-glucose and d-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanol. J Chem Technol Biotechnol 77:641–648

    Article  CAS  Google Scholar 

  • Slininger PJ, Bolen PL, Kurtzman CP (1987) Pachysolen tannophilus: properties and process considerations for ethanol production from d-xylose. Enzyme Microb Technol 9:5–16

    Article  CAS  Google Scholar 

  • Sreenath HK, Jeffries TW (1996) Effect of corn steep liquor on fermentation of mixed sugars by Candida shehatae FPL−702. Appl Biochem Biotechnol 57–58:551–561

    Google Scholar 

  • Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–27

    CAS  Google Scholar 

  • Winkelhausen E, Kuzmanova S (1998) Review: microbial conversion of d-xylose to xylitol. J Ferment Bioeng 86:1–14

    Article  CAS  Google Scholar 

  • Yahashi Y, Hatsu M, Horitsu H, Kawai K, Suzuki T, Takamizawa K (1996a) d-Glucose feeding for improvement of xylitol productivity from d-xylose using Candida tropicalis immobilized on a non-woven fabric. Biotechnol Lett 18:1395–1400

    Article  CAS  Google Scholar 

  • Yahashi Y, Horitsu H, Kawai K, Suzuki T, Takamizawa K (1996b) Production of xylitol from d-xylose by Candida tropicalis: the effect of d-glucose feeding. J Ferment Bioeng 81:148–152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Spanish DGICyT for funding this research within the framework of Project PB98-0305. D. Juan F. García Martín acknowledges the grant of the “Junta de Andalucía”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, S., Bravo, V., García, J.F. et al. Fermentation of d-glucose and d-xylose mixtures by Candida tropicalis NBRC 0618 for xylitol production. World J Microbiol Biotechnol 24, 709–716 (2008). https://doi.org/10.1007/s11274-007-9527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-007-9527-z

Keywords

Navigation