Skip to main content

Advertisement

Log in

Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.)

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Endophytic bacteria of eggplant, cucumber and groundnut were isolated from different locations of Goa, India. Based on in vitro screening, 28 bacterial isolates which effectively inhibited Ralstonia solanacearum, a bacterial wilt pathogen of the eggplant were characterized and identified. More than 50% of these isolates were Pseudomonas fluorescens in which a vast degree of variability was found to exist when biochemical characteristics were compared. In greenhouse experiments, the plants treated with Pseudomonas isolates (EB9, EB67), Enterobacter isolates (EB44, EB89) and Bacillus isolates (EC4, EC13) reduced the wilt incidence by more than 70%. All the selected isolates reduced damping off by more than 50% and improved the growth of seedlings in the nursery stage. Most of the selected antagonists produced an antibiotic, DAPG, which inhibited R. solanacearum under in vitro conditions and might have been responsible for reduced wilt incidence under in vivo conditions. Also production of siderophores and IAA in the culture medium by the antagonists was recorded, which could be involved in biocontrol and growth promotion in crop plants. From our study we conclude that Pseudomonas is the major antagonistic endophytic bacteria from eggplants which have the potential to be used as a biocontrol agent as well as plant growth-promoting rhizobacteria. Large scale field evaluation and detailed knowledge on antagonistic mechanism could provide an effective biocontrol solution for bacterial wilt of solanaceous crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Assis SMP, Silveira EB, Mariano RLR, Menezes D (1998) Bactérias endofíticas-Método deisolamento e potencial antagônico no controle da podridão negra do repolho. Summa Phytopathol 24:216–220

    Google Scholar 

  • Bashan Y, de Bashan LE (2002) Protections of tomato seedlings from the infection by Pseudomonas syringae pv. tomato by using plant growth promoting bacterium Azospirilum brasilense. Appl Environ Microbiol 68:2637–2643. doi:10.1128/AEM.68.6.2637-2643.2002

    Article  CAS  Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53

    Article  CAS  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204:153–168. doi:10.1007/s004250050242

    Article  CAS  Google Scholar 

  • Bhowmik B, Singh RP, Jayaraman J, Verma JP (2002) Population dynamics of cotton endophytic Pseudomonas, their antagonism and protective action against major pathogens of cotton. Indian Phytopathol 55:124–132

    Google Scholar 

  • Botelho GR, Mendonca-Hagler LC (2006) Fluorescent Pseudomonas associated with the rhizosphere of crops—an overview. Braz J Microbiol 37:401–416. doi:10.1590/S1517-83822006000400001

    Article  CAS  Google Scholar 

  • Buddenhagen IW, Kelman A (1964) Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 2:203–230. doi:10.1146/annurev.py.02.090164.001223

    Article  Google Scholar 

  • Burkhead KD, Schisler DA, Slininger PJ (1994) Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Appl Environ Microbiol 60:2031–2039

    CAS  Google Scholar 

  • Chellemi DO, Olson SM, Mitchell DJ, Secker I, McSorley R (1997) Adaptation of soil solarization to the integrated management of soil-borne pests of tomato under humid conditions. Phytopathology 87:250–258. doi:10.1094/PHYTO.1997.87.3.250

    Article  CAS  Google Scholar 

  • Chen C, Bauske EM, Musson G, Rodriguez-Kabana R, Kloepper JW (1995) Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol Control 5:83–91. doi:10.1006/bcon.1995.1009

    Article  Google Scholar 

  • Ciampi-Panno L, Fernandez C, Bustamante P, Andrade N, Ojeda S, Conteras A (1989) Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. Am Potato J 66:315–332. doi:10.1007/BF02854019

    Article  Google Scholar 

  • Cook D, Sequeira L (1991) Genetic and biochemical characterization, of a Pseudomonas solanacearum gene cluster required for extracellular polysaccharide production and for virulence. J Bacteriol 173:1654–1662

    CAS  Google Scholar 

  • Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    CAS  Google Scholar 

  • Gorden SA, Paleg LG (1957) Quantitative measurement of indole acetic acid. Physiol Plant 10:37–48

    Google Scholar 

  • Guo JH, Qi HY, Guo YH, Ge HL, Gong LY, Zhang LX et al (2004) Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol Control 29:66–72. doi:10.1016/S1049-9644(03)00124-5

    Article  Google Scholar 

  • Hallmann J, Quadt-Hallmann WF, Mahaffee A, Kloepper JW (1997) Bacterial endophytes in the agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87. doi:10.1146/annurev.py.29.090191.000433

    Article  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (eds) (1994) Bergey’s Manual of Determinative Bacteriology, 9th edn. Williams and Wilkins, Lippincott, p 528

    Google Scholar 

  • Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration, location and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63:1262–1265

    Article  Google Scholar 

  • Jaxon TCD (2007) Host response to antagonistic bacteria and Ralstonia solanacearum (smith) in brinjal: identification of Pseudomonas fluorescens and detection of Phl D gene. M.Sc. Dissertation submitted to Allahabad Agricultural Institute-Deemed University, p 86

  • Kelman A (1954) The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693–695

    Google Scholar 

  • Kelman A, Hartman GL, Hayward AC (1994) Introduction. In: Hayward AC, Hartman GL (eds) Bacterial wilt: the disease and its causative agents, Pseudomonas solanacearum. CAB International, UK, pp 1–7

    Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanine and fluorescin. J Lab Clin Med 44:301–307

    CAS  Google Scholar 

  • Kloepper JW (1993) Plant growth-promoting rhizobacteria as biological control agents. In: Metting FB (ed) Soil microbia ecology-applications in agricultural and environmental management. Marcel Dekker Inc., New York, pp 255–274

    Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker Inc., New York, pp 199–233

    Google Scholar 

  • Meenakumari KS, Sivaprasad P, Sulochama KK, Liza E (2003) Suppression of bacterial wilt of chilli and tomato using native isolates of fluorescent Pseudomonads. Paper presented at the sixth international workshop on plant growth promoting rhizobacteria, Indian Institute of Spices Research, India, 5–10 October 2003, pp 169–175

  • Merriman PR, Price RD, Kollmorgen JF, Piggott T, Ridge EH (1974) Effect of seed inoculation with Bacillus subtilis and Streptomyces griseus on the growth of cereals and carrots. Aust J Agric Res 25:219–226. doi:10.1071/AR9740219

    Article  Google Scholar 

  • Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2,4-diacetylphloroglucinol producing Pseudomonas species: characterization of superior root colonizing Pseudomonas fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554. doi:10.1128/AEM.67.6.2545-2554.2001

    Article  CAS  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11. doi:10.1016/S0261-2194(00)00056-9

    Article  CAS  Google Scholar 

  • Ramesh R (2006) Field evaluation of biological control agents for the management of Ralstonia solanacearum in Brinjal. J Mycol Plant Pathol 36:327–328

    Google Scholar 

  • Reeves MW, Pine L, Neilands JB, Balows A (1983) Absence of siderophore activity in Legionella species grown in iron deficient media. J Bacteriol 154:324–329

    CAS  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in the potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268. doi:10.1128/AEM.68.5.2261-2268.2002

    Article  CAS  Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843. doi:10.1139/cjm-44-9-833

    Article  CAS  Google Scholar 

  • Suzuki S, He Y, Oyaizu H (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP-72 & its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143. doi:10.1007/s00284-002-3968-2

    Article  CAS  Google Scholar 

  • Toyota K, Kimura M (2000) Suppression of Ralstonia solanacearum in soil following colonization by other strains of R. solanacearum. Soil Sci Plant Nutr 46:449–459

    Google Scholar 

  • Viswanathan R (1999) Induction of systemic resistance against red rot disease in sugarcane by plant growth promoting rhizobacteria. Ph.D. Thesis, TNAU, Coimbatore, India, p 175

  • Viswanathan R, Samiyappan R (2002) Induced systemic resistance by fluorescent Pseudomonads against red rot disease of sugarcane caused by Colletotrichum falcatum. Crop Prot 21:1–10. doi:10.1016/S0261-2194(01)00050-3

    Article  Google Scholar 

  • Viswanathan R, Rajitha R, RameshSundar A, Ramamoorthy V (2003) Isolation and identification of endophytic bacterial strains from sugarcane stalks and in vitro antagonism against the red rot pathogen. Sugar Technol 5:25–29

    Article  CAS  Google Scholar 

  • Xiao R, Kisaalita W (1998) Fluorescent Pseudomonad pyoverdins bind and oxidize ferrous ion. Appl Environ Microbiol 64:1472–1476

    CAS  Google Scholar 

  • Yuan Z, Cang S, Matsufuji M, Nakata K, Nagamatsu Y, Yoshimoto A (1998) High production of pyoluteorin and 2,4-diacetylphloroglucinol by Pseudomonas fluorescens S272 grown on ethanol as a sole carbon source. J Ferment Bioeng 86:559–563. doi:10.1016/S0922-338X(99)80006-3

    Article  CAS  Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P et al (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208. doi:10.1128/AEM.68.5.2198-2208.2002

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the Director, ICAR Research Complex for Goa, Old Goa for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, R., Joshi, A.A. & Ghanekar, M.P. Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol 25, 47–55 (2009). https://doi.org/10.1007/s11274-008-9859-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9859-3

Keywords

Navigation