Skip to main content
Log in

Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Although the terrestrial and temperate orchids–fungal biology have been largely explored, knowledge of tropical epiphytic orchids–fungus relationships, especially on the ecological roles imparted by non-mycorrhizal fungal endophytes, is less known. Exploitation of the endophytic fungal mycobiota residing in epiphytic orchid plants may be of great importance to further elucidate the fungal ecology in this special habitat as well as developing new approaches for orchid conversations. The composition of fungal endophytes associated with leaves, stems and roots of an epiphytic orchid (Dendrobium nobile), a famous Chinese traditional medicinal plant, was investigated. Microscopic imaging, culture-dependant method and molecular phylogeny were used to estimate their entity and diversity. Totally, there were 172 isolates, at least 14 fungal genera and 33 different morphospecies recovered from 288 samples. Ascomycetes, coelomycetes and hyphomycetes were three major fungal groups. There were higher overall colonization and isolation rates of endophytic fungi from leaves than from other tissues. Guignardia mangiferae was the dominant fungal species within leaves; while the endophytic Xylariaceae were frequently observed in all plant tissues; Colletotrichum, Phomopsis and Fusarium were also frequently observed. Phylogenetic analysis based on ITS gene revealed the high diversity of Xylariacea fungi and relatively diverse of non-Xylariacea fungi. Some potentially promising beneficial fungi such as Clonostachys rosea and Trichoderma chlorosporum were found in roots. This is the first report concerning above-ground and below-ground endophytic fungi community of an epiphytic medicinal orchid, suggesting the ubiquitous distribution of non-mycorrhizal fungal endophytes in orchid plants together with heterogeneity and tissue specificity of the endophyte assemblage. Possible physiological functions played by these fungal endophytes and their potential applications are also discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnold AE, Mejía L, Kyllo D et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654. doi:10.1073/pnas.2533483100

    Article  CAS  Google Scholar 

  • Baayen RP, Bonants PJM, Verkley G et al (2002) Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology 92:464–477. doi:10.1094/PHYTO.2002.92.5.464

    Article  CAS  Google Scholar 

  • Barrow JR, Lucero ME, Reyes-Vera I et al (2008) Do symbiotic microbes have a role in plant evolution, performance and response to stress? Commun Integr Biol 1:1–5

    Google Scholar 

  • Bayman P, Otero JT (2006) Microbial endophytes of orchid roots. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Springer, New York, pp 153–173

    Chapter  Google Scholar 

  • Bayman P, Lebron LL, Trembly RL et al (1997) Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). New Phytol 135:143–149. doi:10.1046/j.1469-8137.1997.00618.x

    Article  Google Scholar 

  • Bayman P, Angulo-sandoval P, Baez-ortiz Z et al (1998) Distribution and dispersal of Xylaria endophytes in two tree species in Puerto Rico. Mycol Res 102:944–948. doi:10.1017/S095375629700590X

    Article  Google Scholar 

  • Brundrett MC (2007) Scientific approaches to Australian temperate terrestrial orchid conservation. Aust J Bot 55:293–307. doi:10.1071/BT06131

    Article  Google Scholar 

  • Chang DCN (2007) The screening of orchid mycorrhizal fungi (OMF) and their applications. In: Chen WH, Chen HH (eds) Orchid biotechnology. World Scientific Publishing, Singapore, pp 77–98

    Google Scholar 

  • Chen XM, Guo SX (2005) Effects of four species of endophytic fungi on the growth and polysaccharide and alkaloid contents of Dendrobium nobile. Zhongguo Zhongyao Zazhi 30:253–257 (in Chinese)

    CAS  Google Scholar 

  • Davis EC, Franklin JB, Shaw AJ et al (2003) Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution, and symbiosis. Am J Bot 90:1661–1667. doi:10.3732/ajb.90.11.1661

    Article  Google Scholar 

  • De Deyn GB, Van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633. doi:10.1016/j.tree.2005.08.009

    Article  Google Scholar 

  • Dearnaley JDW (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486. doi:10.1007/s00572-007-0138-1

    Article  Google Scholar 

  • Evans HC, Holmes KA, Thomas SE (2003) Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycol Prog 2:149–160. doi:10.1007/s11557-006-0053-4

    Article  Google Scholar 

  • Frohlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212. doi:10.1017/S095375620000263X

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A et al (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Mol 2:43–56. doi:10.1038/nrmicro797

    Article  CAS  Google Scholar 

  • Herre EA, Mejía LC, Kyllo DA et al (2007) Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 88:550–558. doi:10.1890/05-1606

    Article  Google Scholar 

  • Jensen DF, Knudsen IMB, Lübeck M et al (2007) Development of a biocontrol agent for plant disease control with special emphasis on the near commercial fungal antagonist Clonostachys rosea strain IK726. Aust J Plant Physiol 36:95–101. doi:10.1071/AP07009

    Article  Google Scholar 

  • Jumpponen A (2002) Non-mycorrhizal root endophytes—aspects on their ecology. The 7th international mycological congress. IMC7 book of abstracts. 57 pp

  • Ma M, Tan TK, Wong SM (2003) Identification and molecular phylogeny of Epulorhiza isolates from tropical orchids. Mycol Res 107:1041–1049. doi:10.1017/S0953756203008281

    Article  CAS  Google Scholar 

  • McCormick MK, Whigham DF, O’Neill J (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163:425–438. doi:10.1111/j.1469-8137.2004.01114.x

    Article  Google Scholar 

  • Okane I, Lumyong S, Nakagiri A et al (2003) Extensive host range of an endophytic fungus, Guignardia endophyllicola (anamorph: Phyllosticta capitalensis). Mycoscience 44:353–363. doi:10.1007/s10267-003-0128-x

    Article  Google Scholar 

  • Omacini M, Eggers T, Bonkowsky M et al (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20:226–232. doi:10.1111/j.1365-2435.2006.01099.x

    Article  Google Scholar 

  • Otero JT, Flanagan NS, Herre EA et al (2007) Widespread mycorrhizal specificity correlates to mycorrhizal function in the neotropical, epiphytic orchid Ionopsis utricularioides (Orchidaceae). Am J Bot 94:1944–1950. doi:10.3732/ajb.94.12.1944

    Article  Google Scholar 

  • Ovando I, Darmon A, Bello R et al (2005) Isolation of endophytic fungi and their mycorrhizal potential for the tropical epiphytic orchids Cattleya skinneri, C. aurantiaca and Brassavola nodosa. Asian J Plant Sci 4:309–315

    Article  Google Scholar 

  • Pereira OL, Rollemberg CL, Borges AC et al (2003) Epulorhiza epiphytica sp. nov. isolated from mycorrhizal roots of epiphytic orchids in Brazil. Mycoscience 44:153–155. doi:10.1007/s10267-002-0087-7

    Article  Google Scholar 

  • Samuels GJ (2006) Trichoderma: systematics, the sexual state, and ecology. Phytopathology 96:195–206. doi:10.1094/PHYTO-96-0195

    Article  CAS  Google Scholar 

  • Shan XC, Liew ECY, Weatherhead MA et al (2003) Characterization and taxonomic placement of Rhizoctonia-like endophytes from orchid roots. Mycologia 94:230–239. doi:10.2307/3761799

    Article  Google Scholar 

  • Suarez JP, Weiß M, Abele A et al (2006) Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270. doi:10.1016/j.mycres.2006.08.004

    Article  CAS  Google Scholar 

  • Suryanarayanan TS, Kumaresan V (2000) Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol Res 104:1465–1467. doi:10.1017/S0953756200002859

    Article  Google Scholar 

  • Wang D, Jia SH, Zhang ZX et al (2007) Isolation and culture of an endophytic fungus associated with Dendrobium huoshanense and its effects on the growth of plantlets. J Fungal Res 5:84–88 (in Chinese)

    CAS  Google Scholar 

  • White TJ, Bruns S, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal genes for phylogenetics. PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Zettler LW, Poulter SB, McDonald KI et al (2007) Conservation-driven propagation of an epiphytic orchid (Epidendrum nocturnum) with a mycorrhizal fungus. HortScience 42:135–139

    Google Scholar 

  • Zhang YB, But PPH, Wang ZT et al (2005) Current approaches for the authentication of medicinal Dendrobium species and its products. Plant Genet Resour 3:144–148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express appreciation to Professor Thomas Sieber (Swiss Federal Institute of Technology) and Dr. Zhang C L (Zhejiang University, China) for carefully revising the manuscript and providing informative suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-lin Yuan.

Electronic supplementary material

Below are the link to the electronic supplementary material.

11274_2008_9893_MOESM1_ESM.pdf

Supplementary Fig. 1. Endophytic fungal conidia (left) and mycelium loop (right) intracellularly occurred in stem cells under light microcopy. (Bar = 50 μm, stem tissues were cross-sectioned with a razor blade and stained in 0.05% trypan blue) (PDF 613 kb)

11274_2008_9893_MOESM2_ESM.pdf

Supplementary Fig. 2. Morphological characteristics of endophytic Trichoderma chlorosporum (A, B) and Clonostachys rosea (C, D, E) on PDA medium. (Bar = 20 μm) (PDF 250 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Zl., Chen, Yc. & Yang, Y. Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization. World J Microbiol Biotechnol 25, 295–303 (2009). https://doi.org/10.1007/s11274-008-9893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9893-1

Keywords

Navigation