Skip to main content
Log in

Proposed pathways for the reduction of a reactive azo dye in an anaerobic fixed bed reactor

  • Original paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Some process has been proposed for azo dye degradation and anaerobic bioreactors are one of them, since for their reduction, the dye has to be the electron acceptor. An anaerobic fixed bed bioreactor packed with activated carbon (AC) is proposed to degradate the Reactive Red 272 azo dye. In the present paper a dye degradation mechanism in an anaerobic environment is explained. It is very important to consider the interaction dye-microorganism-AC, because the groups in the AC surface take part in the reaction besides being an excellent carrier for microorganism and an adsorbent for the dye. The aromatic compounds produced in the dye reduction are partially degraded as a function of inlet dye concentration and reactor residence time. In anaerobic environment the aromatic compounds are decomposed through hydroxylation, carboxylation and redox reactions, due to enzymatic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • APHA-AWWA-WPCF (1989) Standard methods for the examination of water and wastewater, 17va ed. In: Clesceri LS, Greenberg AE, Trussell RR (eds) American Public Health Association, USA

  • Buckel W, Golding BT (2006) Radical enzymes in anaerobes. Annu Rev Microbiol 60:27–49. doi:10.1146/annurev.micro.60.080805.142216

    Article  CAS  Google Scholar 

  • Chen B-Y (2002) Understanding decolourization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochem 38:437–446. doi:10.1016/S0032-9592(02)00151-6

    Article  CAS  Google Scholar 

  • Chen B-Y, Chen S-Y, Lin M-Y, Chang J-S (2006) Exploring bioaugmentation strategies for azo-dye decolourization using a mixed consortium of Pseudomonas luteola and Escherichia coli. Process Biochem 41(7):1574–1581. doi:10.1016/j.procbio.2006.03.004

    Article  CAS  Google Scholar 

  • Donlon BA, Razo-Flores E, Lettinga G, Field JA (1996) Continuous detoxification, transformation, and degradation of nitro phenols in up flow anaerobic sludge blanket (UASB) reactors. Biotech Bioeng 51:439–449. doi:10.1002/(SICI)1097-0290(19960820)51:4<439::AID-BIT7>3.0.CO;2-J

    Article  CAS  Google Scholar 

  • dos Santos AB, Cervantes FJ, Yaya-Beas RE, van Lier JB (2003) Effect of redox mediator AQDS on the decolourisation of a reactive azo dye containing triazine group in a thermophilic anaerobic EGSB reactor. Enzyme Microb Technol 33:942–951. doi:10.1016/j.enzmictec.2003.07.007

    Article  CAS  Google Scholar 

  • Field JA (2002) Limits of anaerobic biodegradation. Water Sci Technol 45(10):9–18

    CAS  Google Scholar 

  • Gerardi MH (2006) Wastewater bacteria. Wastewater microbiology series, Ed. Wiley-Interscience. USA

  • Griebler C, Safinowski M, Vieth A, Richnow H, Meckenstock R (2004) Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 38:617–631. doi:10.1021/es0344516

    Article  CAS  Google Scholar 

  • Gonzalez-Gutierrez LV, Escamilla-Silva EM (2007) Anaerobic biodegradation of a reactive red azo dye using an UASB bioreactor packed with activated carbon, World J Microbiol Biotechnol (in review)

  • HeFang , HuWenrong , LiYuezhong (2004) Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium. Chemosphere 57:293–301. doi:10.1016/j.chemosphere.2004.06.036

    Article  CAS  Google Scholar 

  • Khehra MS, Saini HS, Sharma DK, Chadha BS, Chimni SS (2006) Biodegradation of azo dye C.I. Acid Red 88 by an anoxic-aerobic sequential bioreactor. Dyes Pigment 70:1–7. doi:10.1016/j.dyepig.2004.12.021

    Article  CAS  Google Scholar 

  • Kudlich M, Hetheridge MJ, Knackmuss H-J, Stolz A (1999) Autoxidation reactions of different aromatic o-aminohydroxynaphthalenes that are formed during the anaerobic reduction of sulfonated azo dyes. Environ Sci Technol 33:896–901. doi:10.1021/es9808346

    Article  CAS  Google Scholar 

  • Kumar K, Devi SS, Krishnamurthy K, Gampawar S, Mishra N, Pandya GH, Chakrabarti T (2006) Decolorisation, biodegradation and detoxification of benzidine based azo dye. Bioresour Technol 97:407–413. doi:10.1016/j.biortech.2005.03.031

    Article  CAS  Google Scholar 

  • Meckenstock RU, Safinowski M, Griebler C (2004) Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 49:27–36. doi:10.1016/j.femsec.2004.02.019

    Article  CAS  Google Scholar 

  • Miller B (1998) Advanced organic chemistry: reactions and mechanisms. Prentice Hall, USA

    Google Scholar 

  • Plum A, Rehorek A (2005) Strategies for continuous on-line high performance liquid chromatography coupled with diode array detection and electro spray tandem mass spectrometry for process monitoring of sulphonated azo dyes and their intermediates in anaerobic–aerobic bioreactors. J Chromatogr A 1084:119–133. doi:10.1016/j.chroma.2005.03.001

    Article  CAS  Google Scholar 

  • Schink B (2006) Microbially driven redox reactions in anoxic environments: pathways energetics and biochemical consequences. Eng Life Sci 6(3):228–233. doi:10.1002/elsc.200620130

    Article  CAS  Google Scholar 

  • Sponza DT, Işik M (2005) Toxicity and intermediates of C.I. Direct Red 28 dye through sequential anaerobic/aerobic treatment. Process Biochem 40:2735–2744. doi:10.1016/j.procbio.2004.12.016

    Article  CAS  Google Scholar 

  • Supaka N, Juntongjin K, Damronglerd S, Delia M-L, Strehaino P (2004) Microbial decolorization of reactive azo dyes in a sequential anaerobic–aerobic system. Chem Eng J 99:169–176. doi:10.1016/j.cej.2003.09.010

    Article  CAS  Google Scholar 

  • Tauber MM, Guebitz GM, Rehorek A (2005) Degradation of azo dyes by laccase and ultrasound treatment. Appl Environ Microbiol 71:2600–2607. doi:10.1128/AEM.71.5.2600-2607.2005

    Article  CAS  Google Scholar 

  • van der Zee FP, Villaverde S (2005) Combined anaerobic–aerobic treatment of azo dyes—A short review of bioreactor studies. Water Res 39:1425–1440. doi:10.1016/j.watres.2005.03.007

    Article  Google Scholar 

  • Wade LG (2004) Química Orgánica, 5 ta edn. Pearson Prentice Hall, España

    Google Scholar 

  • Ye J, Singh A, Ward OP (2004) Biodegradation of nitroaromatics and other nitrogen-containing xenobiotics. World J Microbiol Biotechnol 20:117–135. doi:10.1023/B:WIBI.0000021720.03712.12

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The research was funded by Fondos Mixtos—Consejo Nacional de Ciencia y Tecnología del Estado de Guanajuato (Project: 31756).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleazar M. Escamilla-Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Gutiérrez, L.V., González-Alatorre, G. & Escamilla-Silva, E.M. Proposed pathways for the reduction of a reactive azo dye in an anaerobic fixed bed reactor. World J Microbiol Biotechnol 25, 415–426 (2009). https://doi.org/10.1007/s11274-008-9906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9906-0

Keywords

Navigation