Skip to main content
Log in

Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Screening soil samples collected from a diverse range of slightly alkaline soil types, we have isolated 22 competent phosphate solubilizing bacteria (PSB). Three isolates identified as Pantoea agglomerans strain P5, Microbacterium laevaniformans strain P7 and Pseudomonas putida strain P13 hydrolyzed inorganic and organic phosphate compounds effectively. Bacterial growth rates and phosphate solubilization activities were measured quantitatively under various environmental conditions. In general, a close association was evident between phosphate solubilizing ability and growth rate which is an indicator of active metabolism. All three PSB were able to withstand temperature as high as 42°C, high concentration of NaCl upto 5% and a wide range of initial pH from 5 to 11 while hydrolyzing phosphate compounds actively. Such criteria make these isolates superior candidates for biofertilizers that are capable of utilizing both organic and mineral phosphate substrates to release absorbable phosphate ion for plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje J (2008) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database issue):D141–D145. doi:10.1093/nar/gkn879

  • Fisk CH, Sabbarow Y (1925) A colorimetric determination of phosphate. J Biol Chem 66:375–400

    Google Scholar 

  • Garcia MC, Diez JA, Vallejo A, Garcia L, Cartagena MC (1997) Effects of applying soluble and coated phosphate fertilizer on phosphate availability in calcareous soils and on P absorpion by a Rye-Grass crop. J Agric Food Chem 45:1931–1936. doi:10.1021/jf960600a

    Article  CAS  Google Scholar 

  • Givskov M, Eberl L, Moller S, Poulsen LK, Molin S (1994) Response to nutrient starvation in Pseudomonas putida KT2442: analysis of general cross-protection cell shape and macromolecular content. J Bacteriol 176:7–14

    CAS  Google Scholar 

  • Hector M, Vicente S, Josep U, Antonio JR, Sonia M (2008) Effect of biocontrol agents Candida sake and Pantoea agglomerans on Penicillium expansum growth and patulin accumulation in apples. Int J Food Microbiol 122:61–67. doi:10.1016/j.ijfoodmicro.2007.11.056

    Article  Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velazquez E (2001) Phosphate solubilizing bacteria as inoculant for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568. doi:10.1051/agro:2001145

    Article  Google Scholar 

  • Illemer P, Schinner F (1995) Solubilization of inorganic calcium phosphate solubilization mechanisms. Soil Biol Biochem 27:257–263. doi:10.1016/0038-0717(94)00190-C

    Article  Google Scholar 

  • Illmer P, Barbato A, Schinner F (1995) Solubilization of hardly soluble AlPO4 with P-solubilizing microorganisms. Soil Biol Biochem 27:265–270. doi:10.1016/0038-0717(94)00205-F

    Article  CAS  Google Scholar 

  • Johri JK, Surange S, Natiyal CS (1999) Occurrence of salt pH and temperature-tolerant phosphate-solubilizing bacteria in alkaline soils. Curr Microbiol 39:89–93. doi:10.1007/s002849900424

    Article  CAS  Google Scholar 

  • Malboobi MA, Behbahani M, Madanin H, Owlia P, Deljou A, Yakhchali B, Moradi M, Hassanabadi H (2009) Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol. doi:10.1007/s11274-009-0038-y

  • Morabbi Heravi K, Eftekhar F, Yakhchali B, Tabandeh F (2008) Isolation and identification of a lipase producing Bacillus sp from soil. Pak J Biol Sci 11(5):740–745

    Article  Google Scholar 

  • Morrissey JP, Dow JM, Mark GL, O’Gara F (2004) Are microbes at the root of a solution to world food production? EMBO Rep 5:922–926. doi:10.1038/sj.embor.7400263

    Article  CAS  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296. doi:10.1111/j.1574-6968.2000.tb08910.x

    Article  CAS  Google Scholar 

  • Palleroni JN (1984) Pseudomonadacea. In: Kreig NR, Holt Jg (eds) Bergay’s manual systematic bacteriology, Vol 1. Williams and Wilkins, Baltimor, MD

  • Rao A, Venkateshvarlu B, Kaul P (1982) Isolation of phosphate dissolving soil Actinomycetes. Curr Sci 51:117–118

    Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339. doi:10.1016/S0734-9750(99)00014-2

    Article  CAS  Google Scholar 

  • Sandra AI, Wright I, Zumoff CH, Schneider L, Beer SV (2001) Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol 67:284–292. doi:10.1128/AEM.67.1.284-292.2001

    Article  Google Scholar 

  • Sneath PHA (1986) Endospore-forming gram-positive rods and cocci. In: Kreig NR, Holt Jg (eds) Bergay’s Manual Systematic Bacteriology, vol 2. Williams and Wilkins, Baltimor, MD

  • Somers E, Vanderleyden J (2004) Rhizosphere bacterial signaling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240. doi:10.1080/10408410490468786

    Article  CAS  Google Scholar 

  • Son HJ, Park GT, Cha MS, Heo MS (2006) Solubilization of insoluble inorganic phosphate by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour Technol 97:204–210. doi:10.1016/j.biortech.2005.02.021

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by a grant from National Research Council of I.R. Iran. We would like to thank Prof. Hani Antoun for his critical revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Malboobi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malboobi, M.A., Owlia, P., Behbahani, M. et al. Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World J Microbiol Biotechnol 25, 1471–1477 (2009). https://doi.org/10.1007/s11274-009-0037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0037-z

Keywords

Navigation