Skip to main content

Advertisement

Log in

Biological activities of the essential oils and methanol extract of tow cultivated mint species (Mentha longifolia and Mentha pulegium) used in the Tunisian folkloric medicine

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The composition of the essential oils and methanolic extracts of two cultivated mint species (M. longifolia and M. pulegium), as well as the in vitro antimicrobial and antioxidant activities of the essential oil and methanol extract of Mentha longifolia and Mentha pulegium were compared. GC-MS analysis of the essential oil identified 41 compounds constituting 96.66 and 96.13% of the total oil from M. longifolia and M. pulegium, respectively. The later oils were rich on pulegone (47.15 and 61.11%, respectively). Moreover, 1,8 cineole (11.54%), menthone (10.7%), α-pinene (3.57%), α-terpineol (3.17%) and d-cadinene (3.53%) were only present in M. longifolia oil, while isomenthone (17.02%), and piperitone (2.63%), were characteristic of M. pulegium oil. Shoot extract of the two species showed significantly different contents in total polyphenols (89.1 and 37.41 mg GAE/g DW), flavonoids (63.93 and 33.83 mg CE/g DW) and tannins (1.47 and 3.07 mg CE/g DW), respectively in M. longifolia and M. pulegium. The essential oils showed strong antimicrobial activity against all 16 microorganisms tested, whereas the methanol extracts were inactive. Moreover, the essential oils showed higher antioxidant activity than the methanolic extracts against the DPPH and superoxide radical scavenging. In fact, antioxidant activities of the oils were the same for both M. longifolia and M. pulegium against DPPH (IC50 = 9 and 10 μg/ml, respectively) and 2-fold and 4-fold higher than shoot extracts (IC50 = 20 and 48 μg/ml, respectively). Moreover, both oils showed the same antioxidative abilities as compared to the positive control (butylated hydroxytoluene). In the same way, the capacity to inhibit superoxide anion was very significant for the two oils (0.1 μg/ml for M. longifolia and 0.11 μg/ml for M. pulegium).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams RP (2001) Identification of essential oil components by gas chromatography/mass spectromety. Carol Stream, Allured, IL

  • Angioni A, Barra A, Coroneo V et al (2006) Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. J Agric Food Chem 54:4364–4370

    Article  CAS  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D et al (2008) Biological effects of essential oils—A review. Food Chem Toxicol 46:446–475

    Article  CAS  Google Scholar 

  • Betts TJ (2001) Chemical characterisation of the different types of volatile oil constituents by various solute retention ratios with the use of conventional and novel commercial gas chromatographic stationary phases. J Chromatogr A936:33–46

    Article  Google Scholar 

  • Bowles EJ (2003) Chemistry of aromatherapeutic oils. Allen & Unwin, London. ISBN 174114051X

    Google Scholar 

  • Budavari S, O’Neil MJ, Smith A, Heckelman PE (eds) (1989) The Merck Index. An encyclopedia of chemicals, drug, and biologicals, 11th edn. Merck & Co., Rahway

    Google Scholar 

  • Candan F, Unlu M, Tepe B et al (2003) Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). J Ethnopharmacol 87:215–220

    Article  CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Dewanto V, Wu X, Adom KK et al (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014

    Article  CAS  Google Scholar 

  • Dixon RA, Paiva N (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  Google Scholar 

  • Dorman HJ, Kosar M, Kahlos K et al (2003) Antioxidant prosperities and composition of aqueous extracts from Mentha species, hybrids, varieties and cultivars. J Agric Food Chem 51:4563–4569

    Article  CAS  Google Scholar 

  • Duh P, Tu YY, Yen GC (1999) Antioxidant activity of water extract of harng jyur (Chrysanthemum morifolium. Ramat). Lebenson Wiss Technol 32:269–277

    Article  CAS  Google Scholar 

  • Eberhardt MV, Lee CY, Liu RH (2000) Antioxidant activity of fresh apples. Nature 405:903–904

    CAS  Google Scholar 

  • Espin JC, Soler-Rivas C, Wichers HJ (2000) Characterisation of the total free radical scavenger capacity of vegetable oils and oil fractions using 2.2-diphenyl-1-picrylhydrazyl radical. J Agric Food Chem 48:648–656

    Article  CAS  Google Scholar 

  • European Pharmacopoeia (1975) Maisonneuve SA, Sainte-Ruffine

  • Ghoulami S, Idrissi A, Fkih-Tetouani S (2000) Phytochemical study of Mentha longifolia of Morocco. Fitoterapia 72:596–598

    Article  Google Scholar 

  • Gul P (1994) Seasonal variation of oil and menthol content in Mentha arvensis Linn. Pakistan J For 44:16–20

    Google Scholar 

  • Gulluce M, Sahin F, Sokmen M et al (2007) Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem 103:1449–1456

    Article  CAS  Google Scholar 

  • Gupta R (1991) Agrotechnology of medicinal plants. In: Wijesekera ROB (ed) The medicinal plant industry. CRC Press, Boca Raton, pp 43–57

    Google Scholar 

  • Hajlaoui H, Snoussi M, Ben Jannet H et al (2008) Comparison of chemical composition and antimicrobial activities of Mentha longifolia L. ssp. longifolia essential oil from two Tunisian localities (Gabes and Sidi Bouzid). Ann Microbiol 58(3):103–110

    Article  Google Scholar 

  • Hanato T, Kagawa H, Yasuhara T et al (1988) Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effect. Chem Pharm Bull 36:1090–1097

    Google Scholar 

  • Hoet S, Stévigny C, Hérent MF et al (2006) Antitrypanosomal compounds from leaf essential oil of Strychnos spinosa. Planta Med 72:480–482

    Article  CAS  Google Scholar 

  • Ipek E, Zeytinoglu H, Okay S et al (2005) Genotoxicity and antigenotoxicity of Origanum oil and carvacrol evaluated by Ames Salmonella/microsomal test. Food Chem 93:551–556

    Article  CAS  Google Scholar 

  • Iscan G, Kirimer N, Kurkcuoglu M, Baser KHC et al (2002) Antimicrobial screening of Mentha piperita essential oils. J Agric Food Chem 50(14):3943–3946

    Article  CAS  Google Scholar 

  • Jia Z, Tang M, Wu J (1998) The determination of flavonoid contents in mulberry and their scavenging effects on superoxides radicals. Food Chem 64:555–559

    Google Scholar 

  • Karaman I, Sahin F, Gulluce M, et al (2003) Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J Ethnopharmacol 85:231–235

    Google Scholar 

  • Karray-Bouraoui N, Ksouri R, Falleh H et al (2010) Effects of environment and development stage on phenolic content and antioxidant activities of Tunisian Mentha pulegium L. J Food Biochem (in press)

  • Kokkini S, Karousou R, Lanaras T (1995) Essential oils of spearmint (carvone-rich) plants from the Island of Crete (Greece). Biochem Syst Ecol 23:287–297

    Article  Google Scholar 

  • Kothari SK, Singh UB (1995) The effect of row spacing and nitrogen fertilization on scotch spearmint (Mentha gracilis Sole). J Essent Oil Res 7:287–297

    CAS  Google Scholar 

  • Ksouri R, Megdiche W, Debez A et al (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem 45:244–249

    Article  CAS  Google Scholar 

  • Ksouri R, Megdiche W, Falleh H et al (2008) Influence of biological, environmental and technical factors on phenolics content and antioxidant activities of Tunisian halophytes. Compte Rendues de Biologies 331:865–873

    Article  CAS  Google Scholar 

  • Lis-Balchin M, Deans SG (1997) Bioactivity of selected plant essential oils against Listeria monocytogenes. J Appl Bacteriol 82:759–762

    CAS  Google Scholar 

  • Liu RH, Eberhardt MV, Lee CY (2001) Antioxidant and antiproliferative activities of selected New York apple cultivars N. Y. Fruit Q 9(2):15–17

    Google Scholar 

  • Mahboubi M, Haghi G (2008) Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J Ethnopharmacol 119:325–327. doi:10.1016/j.jep.2008.07.023

    Google Scholar 

  • Marzouk B, Ben Hadj Fredj M, Chraief I et al (2008) Chemical composition and antimicrobial activity of essential oils from Tunisian Mentha pulegium L. J Food Agric & Environ 6(1):78–82

    CAS  Google Scholar 

  • Masotti V, Juteau F, Bessière JM et al (2003) Seasonal and phenological variations of the essential oil from the narrow endemic species Artemisia molinieri and its biological activities. J Agric Food Chem 51:7115–7121

    Article  CAS  Google Scholar 

  • Mastelic J, Jerkovfc I (2002) Free and glyoosldically bound volatiles of Mentha longifolia growing in Croatia. Chem Nat Compd 38:561–564

    Article  CAS  Google Scholar 

  • Mau JL, Chao GR, Wu KT (2001) Antioxidant properties of methalonic extracts from several ear mushrooms. J Agric Food Chem 49:5461–5467

    Article  CAS  Google Scholar 

  • Mimica-Dukic N, Popovic M, Jakovljevic V et al (1999) Pharmacological studies of Mentha longifolia phenolic extracts II. Hepatoprotective activity. Pharm Biolog 37(3):221–224

    Article  CAS  Google Scholar 

  • Mimica-Dukic N, Bozin B, Sokovic M et al (2003) Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med 69:413–419

    Article  CAS  Google Scholar 

  • Moreno L, Bello R, Primo-Yufera E et al (2002) Pharmacological properties of the methanol extract from Mentha suaveolens Ehrh. Phytother Res 16:10–13

    Article  Google Scholar 

  • Naczk M, Shahidi F (2004) Extraction and analysis of phenolics in food. J Chromatogr A 1054:95–111

    CAS  Google Scholar 

  • Naimiki M (1990) Antioxidants/antimutagens in foods. CRC Crit Rev Food Sci Nutr 29:273–300

    Article  Google Scholar 

  • Oudhia P (2003) Traditional and medicinal knowledge about pudina (Mentha sp. family: Labiatae) in Chhattisgarh, India. Botanical. Online, http://botanical.com

  • Oyedeji AO, Afolayan AJ (2006) Chemical composition and antibacterial activity of the essential oil isolated from South African Mentha longifolia (L.) L. subsp. capensis (Thunb.) Briq. JEOR 18:57–59

    CAS  Google Scholar 

  • Patro BS, Bauri AK, Mishra S et al (2005) Antioxidant activity of Myristica malabarica extracts and their constituents. J Agric Food Chem 53:6912–6918

    Article  CAS  Google Scholar 

  • Perry NB, Anderson RE, Brennan NJ et al (1999) Essential oils from Dalmation Sage (Salvia officinalis L.): variations among individuals, plant parts, seasons and sites. J Agric Food Chem 47:2048–2054

    Article  CAS  Google Scholar 

  • Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811

    Article  CAS  Google Scholar 

  • Pottier-Alapetite G (1981) Flore de la Tunisie. Angiospermes-Dicotylédones Gamopétales. Publication scientifiques Tunisiennes, Tunisia, p 814

  • Ramarathnam N, Osawa T, Namiki M et al (1986) Studies on the relationship between antioxidative activity of rice hull and germination ability of rice seeds. J Sci Food Agric 37:719–726

    Article  CAS  Google Scholar 

  • Rasooli I, Rezaei MB (2002) Bioactivity and chemical properties of essential oils from Zataria multiflora Boiss and Mentha longifolia (L.) Huds. J Essent Oil Res 14:141–146

    CAS  Google Scholar 

  • Ravid U, Putievsky E, Katzir I, Carmeli D, Eshel A, Schenk HP (1992) The volatile oil Artemisia judaica L. Chemotypes. Flavour Fragr J 7(2):69–72

    Article  CAS  Google Scholar 

  • Reynolds JEF (1996) Martindale-the extra pharmacopeia, 31st edn. Royal Pharmaceutical Society of Great Britain, London

    Google Scholar 

  • Sahin F, Karaman I, Gulluce M et al (2002) Evaluation of antimicrobial activities of Satureja hortensis L. J Ethnopharmacol 87:61–65

    Google Scholar 

  • Santana-Rios G, Orner GA, Amantana A (2001) Potent antimutagenic activity of white tea in comparison with green tea in the Salmonella assay. Mutat Res 495:61–74

    CAS  Google Scholar 

  • Seigler DS (1998) Plant secondary metabolism. Kluwer, Boston, p 759

    Google Scholar 

  • Sharma S, Tyagi BR (1991) Character correlation, path coefficient and heritability analyses of essential oil and quality components in corn mint. J Genet 45:257–262

    CAS  Google Scholar 

  • Shasany AK, Khanuja SPS, Dhawan S et al (2000) Positive correlation between menthol content and in vitro menthol tolerance in Mentha arvensis L. cultivars. J Biosci 25(3):263–266

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Small E (1997) Mentha-mint family (Lamiacae). In: Culinary Herbs. NRC Research Press, Ottawa, pp 351–372

  • Sreenivasulu N, Grimm B, Wobus U et al (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442

    Article  CAS  Google Scholar 

  • Sun JM, Richardo-da-Silvia IS (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46:4267–4274

    Article  CAS  Google Scholar 

  • Vuddhakul V, Bhooponga P, Hayeebilana F et al (2007) Inhibitory activity of Thai condiments on pandemic strain of Vibrio parahaemolyticus. Food Microbiol 24:413–418

    Article  Google Scholar 

  • Wannisorn B, Jarikasem S, Soontorntanasart T (1996) Antifungal activity of lemon grass oil and lemon grass oil cream. Phytother Res 10(7):551–554

    Article  Google Scholar 

  • Weng XC, Wang W (2000) Antioxidant activity of compounds isolated from Salvia plebeia. Food Chem 71:489–493

    Article  CAS  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  CAS  Google Scholar 

  • Younis YMH, Beshir SM (2004) Carvone-rich essential oils from Mentha longifolia (L.) Huds. ssp. Schimperi Briq. and Mentha spicata L. grown in Sudan. J Essent Oil Res 16:539–541

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafedh Hajlaoui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajlaoui, H., Trabelsi, N., Noumi, E. et al. Biological activities of the essential oils and methanol extract of tow cultivated mint species (Mentha longifolia and Mentha pulegium) used in the Tunisian folkloric medicine. World J Microbiol Biotechnol 25, 2227–2238 (2009). https://doi.org/10.1007/s11274-009-0130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0130-3

Keywords

Navigation