Skip to main content
Log in

Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.)

  • Original Article
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nodulation and the subsequent nitrogen fixation are important factors that determine the productivity of legumes. The beneficial effects of nodulation can be enhanced when rhizobial inoculation is combined with plant-growth-promoting bacteria (PGPB). The PGPB strain Bacillus thuringiensis-KR1, originally isolated from the nodules of Kudzu vine (Pueraria thunbergiana), was found to promote plant growth of field pea (Pisum sativum L.) and lentil (Lens culinaris L.) under Jensen’s tube, growth pouch and non-sterile soil, respectively, when co-inoculated with Rhizobium leguminosarum-PR1. Coinoculation with B. thuringiensis-KR1 (at a cell density of 106 c.f.u. ml−1) provided the highest and most consistent increase in nodule number, shoot weight, root weight, and total biomass, over rhizobial inoculation alone. The enhancement in nodulation due to coinoculation was 84.6 and 73.3% in pea and lentil respectively compared to R. leguminosarum-PR1 treatment alone. The shoot dry-weight gains on coinoculation with variable cell populations of B. thuringiensis-KR1 varied from 1.04 to 1.15 times and 1.03 to 1.06 times in pea and lentil respectively, while root dry weight ratios of coinoculated treatments varied from 0.98 to 1.14 times and 1.08 to 1.33 times in pea and lentil respectively, those of R. leguminosarum-PR1 inoculated treatment at 42 days of plant growth. While cell densities higher than 106 c.f.u. ml−1 had an inhibitory effect on nodulation and plant growth, lower inoculum levels resulted in decreased cell recovery and plant growth performance. The results of this study indicate the potential of harnessing endophytic bacteria of wild legumes for improving the nodulation and growth of cultivated legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews JH, Harris RF (2003) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180. doi:10.1146/annurev.phyto.38.1.145

    Article  Google Scholar 

  • Araujo WL, Maccheroni W Jr, Aguilar-Vildosa CI et al (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissue of citrus rootstocks. Can J Microbiol 47:229–236. doi:10.1139/cjm-47-3-229

    Article  CAS  Google Scholar 

  • Basu PS, Ghosh AC (1998) Indole acetic acid and its metabolism in root nodules of a monocotyledonous tree Roystonea regia. Curr Microbiol 37:137–140. doi:10.1007/s002849900352

    Article  CAS  Google Scholar 

  • Bolton H Jr, Elliott LF, Turco RF et al (1990) Rhizoplane colonization of pea seedlings by Rhizobium leguminosarum and a deleterious root colonizing Pseudomonas sp. and effects on plant growth. Plant Soil 123:121–124

    Google Scholar 

  • Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125:1075–1080

    CAS  Google Scholar 

  • Burns TA Jr, Bishop PE, Israel DW (1981) Enhanced nodulation of leguminous plant roots by mixed cultures of Azotobacter vinelandii and Rhizobium. Plant Soil 62:399–412. doi:10.1007/BF02374137

    Article  Google Scholar 

  • Castejon-Munoz M, Oyarzun PJ (1995) Soil receptivity to Fusarium solani f. sp. pisi and biological control of root rot of pea. Eur J Plant Pathol 101:35–49. doi:10.1007/BF01876092

    Article  Google Scholar 

  • Chattopadhyay A, Bhatnagar NB, Bhatnagar R (2004) Bacterial insecticidal toxins. Crit Rev Microbiol 30:33–54. doi:10.1080/10408410490270712

    Article  CAS  Google Scholar 

  • Dashti N, Zhang F, Hynes R et al (1997) Application of plant growth-promoting rhizobacteria to soybean [Glycine max (L.) Merr.] increases protein and dry matter yield under short season conditions. Plant Soil 188:33–41. doi:10.1023/A:1004295827311

    Article  CAS  Google Scholar 

  • Dong Y, Iniguez LA, Ahmer BMM et al (2003) Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Appl Environ Microbiol 69:1783–1790. doi:10.1128/AEM.69.3.1783-1790.2003

    Article  CAS  Google Scholar 

  • Dubeikovesky AN, Modokhova EA, Kocheskov VV et al (1993) Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid. Soil Biol Biochem 25:1211–1221. doi:10.1016/0038-0717(93)90217-Y

    Article  Google Scholar 

  • Elvira-Recuenco M, van Vuurde JWL (2000) Natural incidence of endophytic bacteria in pea cultivars under weld conditions. Can J Microbiol 46:1036–1041. doi:10.1139/cjm-46-11-1036

    Article  CAS  Google Scholar 

  • Garbeva P, Overbeek LS, Vuurde JW et al (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41:369–383

    CAS  Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (2002) Stimulation of nodulation and plant growth of chickpea (Cicer arietinum L.) by Pseudomonas spp. antagonistic to fungal pathogens. Biol Fertil Soils 36:391–396. doi:10.1007/s00374-002-0554-5

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF et al (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    CAS  Google Scholar 

  • Halverson LJ, Handelsman J (1991) Enhancement of soybean nodulation by bacillus cereus UW85 in the field and in a growth chamber. Appl Environ Microbiol 57:2767–2770

    CAS  Google Scholar 

  • Handelsman J, Raffel S, Mester EH et al (1990) Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl Environ Microbiol 56:713–718

    CAS  Google Scholar 

  • Hans DY, Coplin DL, Bauer WD et al (2000) A rapid bioassay for screening rhizosphere microorganisms for their ability to induce systemic resistance. Phytopathol 90:327–332. doi:10.1094/PHYTO.2000.90.4.327

    Article  Google Scholar 

  • Hirsch AM, Bhuvaneswari TV, Torrey JG et al (1989) Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA 86:1244–1248. doi:10.1073/pnas.86.4.1244

    Article  CAS  Google Scholar 

  • Inc SPSS (1999) SPSS Base 10.0 for Windows User’s Guide. SPSS Inc., Chicago

    Google Scholar 

  • Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38:1219–1232

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M et al (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:883–884. doi:10.1038/286885a0

    Article  Google Scholar 

  • Knight TJ, Langston-Unkefer PJ (1988) Enhancement of symbiotic dinitrogen fixation by a toxin-releasing plant pathogen. Science 241:951–954. doi:10.1126/science.241.4868.951

    Article  CAS  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: James CW, White JF (eds) Microbial endophytes, Marcel Dekker Inc. New York, pp 199–233

  • Kondorosi A, Kondorosi E, Pankhurst CE et al (1982) Mobilization of a Rhizobium meliloti megaplasmid carrying nodulation and nitrogen fixation genes into other rhizobia and Agrobacterium. Mol Gen Genet 188:433–439. doi:10.1007/BF00330045

    Article  CAS  Google Scholar 

  • Kuklinsky-Sobral J, Araujo WL, Mendes R et al (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251. doi:10.1111/j.1462-2920.2004.00658.x

    Article  CAS  Google Scholar 

  • Lifshitz R, Kloepper JW, Kozlowski M (1987) Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 33:390–395

    Article  Google Scholar 

  • Liu ZL, Sinclair JB (1990) Enhanced soybean plant growth and nodulation by Bradyrhizobium japonicum in the presence of strains of Bacillus megaterium. (Abst). Plant Pathol 80:1024

    Google Scholar 

  • Liu ZL, Sinclair JB (1993) Colonization of soybean roots by bacillus megaterium B153–2-2. Soil Biol Biochem 25:849–855. doi:10.1016/0038-0717(93)90087-R

    Article  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F et al (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606. doi:10.1080/0735-260291044377

    Article  Google Scholar 

  • Martinez E, Palacios R, Sanchez F (1987) Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J Bacteriol 169:2828–2834

    CAS  Google Scholar 

  • Motsara MR, Bhattacharyya P, Srivastava B (1995) Biofertilizer Technology, marketing and usage—A sourcebook-cum-glossary. Fertilizer Development and Consultation Organization, 1st edn. New Delhi, India, pp184 + viii

  • Raverker KP, Konde BK (1988) Effect of Rhizobium and Azospirillum lipoferum inoculation on nodulation, yield and nitrogen uptake of peanut cultivars. Plant Soil 106:249–252. doi:10.1007/BF02371220

    Article  Google Scholar 

  • Reyes-Ramirez A, Escudero-Abarca BI, Aguilar-Uscanga G et al (2004) Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathgenic fungi in soybean seeds. J Food Sci 69:M131–M134

    CAS  Google Scholar 

  • Russell AD, Hugo WB, Ayliffo GAJ (1982) Principles and practices of disinfection, preservation & sterilization. Black Wall Scientific, London

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Schroth MN, Hancock JG (1981) Selected topics in biological control. Annu Rev Microbiol 35:453–476. doi:10.1146/annurev.mi.35.100181.002321

    Article  CAS  Google Scholar 

  • Schwinghamer EA (1971) Antagonism between strains of R. trifolii in culture. Soil Biol Biochem 3:355–363. doi:10.1016/0038-0717(71)90046-0

    Article  Google Scholar 

  • Selvakumar G, Kundu S, Gupta Anand D et al (2008) Isolation and characterization of nonrhizobial plant growth-promoting bacteria from nodules of kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Curr Microbiol 56:134–139. doi:10.1007/s00284-007-9062-z

    Article  CAS  Google Scholar 

  • Sindhu SS, Gupta SK, Dadarwal KR (1999) Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of plant growth in green gram (Vigna radiata). Biol Fertil Soils 29:62–68. doi:10.1007/s003740050525

    Article  CAS  Google Scholar 

  • Somasegaran P, Hoben HJ (1985) Methods in legume Rhizobium technology. Niftal University of Hawaii, Hawaii

    Google Scholar 

  • Srinivasan M, Peterson DJ, Holl FB (1996) Influence of IAA producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli. Can J Microbiol 42:1006–1014

    Article  CAS  Google Scholar 

  • Strobel G, Daisy B, Castillo U et al (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268. doi:10.1021/np030397v

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG et al (1997) Biodiversity of endophytic bacteria that colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19. doi:10.1007/s003740050273

    Article  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30. doi:10.1016/S0735-2689(01)80001-0

    Article  Google Scholar 

  • Valverde A, Velazquez E, Fernandez-Santos F et al (2005) Phyllobacterium trifolii sp nov. nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989. doi:10.1099/ijs.0.63551-0

    Article  CAS  Google Scholar 

  • Zhang F, Dashti N, Hynes H et al (1997) Plant growth-promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot (Lond) 77:453–459. doi:10.1006/anbo.1996.0055

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Dr. Yogesh Shouche, National Centre for Cell Sciences, Pune, India, for the sequencing of the 16S rRNA gene of Bacillus thuringiensis-KR1. Dr. G. Singh, V·I.H.A., Almora, Uttarakhand, India is acknowledged for providing the seed material used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj K. Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, P.K., Mishra, S., Selvakumar, G. et al. Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microbiol Biotechnol 25, 753–761 (2009). https://doi.org/10.1007/s11274-009-9963-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-9963-z

Keywords

Navigation