Skip to main content
Log in

Chemoenzymatic resolution of racemic Wieland–Miescher and Hajos–Parrish ketones

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Enantiospecific microbial reduction of bicyclic ketones was described. Racemic Wieland–Miescher (1) and Hajos–Parrish (2) ketones were used as substrates. In a 4-h biotransformation of Hajos–Parrish ketone (2) using the strain of Didymosphaeria igniaria an optically pure ketone (R)-2 was obtained, whereas the (S)-2 ketone underwent reduction to (4aS,5S)-4 alcohol with 100% of enantiomeric excess and with over 60% of diastereoisomeric excess. Jones oxidation of the alcohol obtained in the biotransformation gave an optically pure ketone (S)-2. Enzymatic system of Coryneum betulinum reduced the (R)-2 ketone to (4aR,5S)-4 alcohol with a high enantiomerical purity in a 6-day reaction. Wieland-Miescher (1) ketone was transformed by these microorganisms in an analogous way, but the reaction times were longer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6

Similar content being viewed by others

References

  • Andrade LH, Comasseto JV, Rodrigues DF, Pellizari VH, Porto ALM (2005) Enantioselective reduction of ortho-substituted-acetophenones by bacterial strains isolated from medium enriched with biphenyl or diesel fuel. J Mol Catal B Enzym 33:73–79

    Article  CAS  Google Scholar 

  • Bichlmaier I, Siiskonen A, Finel M, Yli-Kauhaluoma J (2006) Stereochemical sensitivity of the human UDP-glucuronosyltransferases 2B7 and 2B17. J Med Chem 49:1818–1827

    Article  CAS  Google Scholar 

  • Buchschachter P, Fürst A, Gutzwiller J (1990) (S)-8a-methyl-3, 4, 8, 8a-tetrahydro-1, 6(2H, 7H)-naphthalenedion. Org Synth Coll 7:368–372

    Google Scholar 

  • Cheung WS, Wong HNC (1999) Total synthesis of (-)-hispanolone and an improved approach towards prehispanolone. Tetrahedron 55:11001–11016

    Article  CAS  Google Scholar 

  • Fuhshuku K, Funa N, Akeboshi T, Ohta H, Hosomi H, Ohba S, Sugai T (2000) Access to Wieland-Miescher ketone in an enantiomerically pure form by kinetic resolution with yeast-mediated reduction. J Org Chem 65:129–135

    Article  CAS  Google Scholar 

  • Fuhshuku K, Tomita M, Sugai T (2003) Enantiomerically pure octahydronaphthalenone and octahydroindenone: elaboration of the substrate overcame the specificity of yeast-mediated reduction. Adv Synth Catal 345:766–774

    Article  CAS  Google Scholar 

  • Grieco PA, Collins JL, Moher ED, Fleck TJ, Gross RS (1993) Synthetic studies on quassinoids: total synthesis of (-)-chaparrinone, (-)-glaucarubolone, and (+)-glaucarubinone. J Am Chem Soc 115:6078–6093

    Article  CAS  Google Scholar 

  • Hioki H, Hasimoto T, Kodama M (2000) Efficient kinetic resolution of (±)-4-methyl-Hajos-Parrish ketone by baker`s yeast reduction. Tetrahedron Asymmetr 11:829–834

    Article  CAS  Google Scholar 

  • Janeczko T, Dmochowska-Gładysz J, Białońska A, Ciunik Z (2006a) Microbial Hydroxylation of Chiral Bicyclic Enones by Chaetomium sp. 1 and Didymosphaeria igniaria Cultures. Biocat Biotrans 24:458–463

    Article  CAS  Google Scholar 

  • Janeczko T, Dmochowska-Gładysz J, Kuźbik M, Kowalski T (2006b) Enantiospecific microbial reduction of acetophenone and its methoxy derivatives. Chem Agric 7:181–185

    Google Scholar 

  • Janeczko T, Dmochowska-Gładysz J, Kostrzewa-Susłow E (2009) Microbial enantioselective reduction of acetylpyridine. Przemysł Chemiczny 5:458–460

    Google Scholar 

  • Kim M, Kawada K, Gross RS, Watt DS (1990) An enantioselective synthesis of (+)-picrasin B, (+)-Δ2-picrasin B, and (+)-Quassin from the R-(-)enantiomer of the Wieland-Miescher ketone. J Org Chem 55:504–511

    Article  CAS  Google Scholar 

  • Lin Y, Song X, Fu J, Lin J, Qu Y (2009) Microbial transformation of Androst-4-ene-3, 17-dione by Bordetella sp. B4 CGMCC 2229. J Chem Technol Biotechnol 84:789–793

    Article  CAS  Google Scholar 

  • Linder W, Rath M, Stoschitzky K, Semmelrock HJ (1989) Pharmacokinetic data of propranolol enantiomers in a comparative human study with (S)- and (R, S)-propranolol. Chirality 1:10–13

    Article  Google Scholar 

  • Shimizu N, Akita H, Kawamata T (2002) Enzymatic resolution of cis- and trans-1, 2, 3, 4, 6, 7, 8, 8a-octahydro-8a-methyl-6-oxo-naphtyl acetate derivatives. Tetrahedron Asymmetr 13:2123–2131

    Article  CAS  Google Scholar 

  • Yoe S-K, Hatae N, Seki M, Kanematsu K (1995) Enantioselective synthesis of an oxa-taxane derivative via tandem intramolecular [2 + 2] cycloaddition and [3, 3]-sigmatropic rearrangement of allenyl ether. Tetrahedron 51:3499–3506

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Janeczko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janeczko, T., Dmochowska-Gładysz, J. & Kostrzewa-Susłow, E. Chemoenzymatic resolution of racemic Wieland–Miescher and Hajos–Parrish ketones. World J Microbiol Biotechnol 26, 2047–2051 (2010). https://doi.org/10.1007/s11274-010-0390-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0390-y

Keywords

Navigation