Skip to main content
Log in

Biodegradation of malathion by Brevibacillus sp. strain KB2 and Bacillus cereus strain PU

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We report here the degradation of a pesticide, malathion, by Brevibacillus sp. strain KB2 and Bacillus cereus strain PU, isolated from soil samples collected from malathion contaminated field and an army firing range respectively. Both the strains were cultured in the presence of malathion under aerobic and energy-limiting conditions. Both strains grew well in the medium having malathion concentration up to 0.15%. Reverse phase HPLC–UV analysis indicated that Strain KB2 was able to degrade 72.20% of malaoxon (an analogue of malathion) and 36.22% of malathion, while strain PU degraded 87.40% of malaoxon and 49.31% of malathion, after 7 days of incubation. The metabolites mal-monocarboxylic acid and mal-dicarboxylic acid were identified by Gas chromatography/mass spectrometry. The factors affecting biodegradation efficiency were investigated and effect of malathion concentration on degradation rate was also determined. The strain was analyzed for carboxylesterase activity and maximum activity 210 ± 2.5 U ml−1 and 270 U ± 2.7 ml−1 was observed for strains KB2 and PU, respectively. Cloning and sequencing of putative malathion degrading carboxylesterase gene was done using primers based PCR approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel YM (2005) Molecular characterization of malathion biodegrading enzymes extracted from Egyptian bacterial isolates. N Egypt J Microbiol 10:226–231

    Google Scholar 

  • Abhilash PC, Singh N (2009) Pesticide use and application an Indian scenario. J Hazard Mater 165:1–12

    Article  CAS  Google Scholar 

  • Abo-Amer AE (2007) Involvement of chromosomally-encoded genes in malathion utilization by Pseudomonas aeruginosa AA112. Acta Microbiologica Immunologica Hungarica 54:261–277

    Article  CAS  Google Scholar 

  • Ahmed M, Rocha JBT, Mazzanti CM, Morsch ALB, Cargnelutti D, Correa M, Loro V, Morsch VM, Schetinger MRC (2007) Malathion, carbofuran and paraquat inhibit Bungarus sindanus (krait) venom acetylcholinesterase and human serum butyrylcholinesterase in vitro. Ecotoxicology 16:363–369

    Article  CAS  Google Scholar 

  • Aneja KR (2003) Experiments in microbiology, plant pathology and biotechnology. New Age International Publishers, New Delhi

    Google Scholar 

  • Bourquin AW (1977) Degaradation of malathion by salt marsh microorganisms. Appl Environ Microbiol 33:356–362

    CAS  Google Scholar 

  • Budischak SA, Belden LK, Hopkins WA (2009) Relative toxicity of malathion to trematode-infected and noninfected Rana palustris tadpoles. Arch Environ Contam Toxicol 56:123–128

    Article  CAS  Google Scholar 

  • Durkin PR (2008) Malathion, human health and ecological risk assessment. SERA TR-052-02-02c

  • El-Dib MA, El-Elaimy IA, Kotb A, Elowa SH (1996) Activation of in vivo metabolism of malathion in male Tilapia nilotica. Bull Environ Contam Toxicol 57:667–674

    Article  CAS  Google Scholar 

  • Foster LJR, Bia H (2004) Microbial degradation of the organophosphate pesticide, Ethion. FEMS Microbiol Lett 240:49–53

    Article  CAS  Google Scholar 

  • Galloway T, Handy R (2003) Immunotoxicity of organophosphorous pesticides. Ecotoxicol 12:345–363

    Article  CAS  Google Scholar 

  • Goda SK, Elsayed EE, Khodair TA, El-Sayed Walaa, Mohamed ME (2010) Screening for and isolation and identification of malathion-degrading bacteria: cloning and sequencing a gene that potentially encodes the malathion-degrading enzyme, carboxylestrase in soil bacteria. Biodegradation doi:10.1007/s10532-010-9350-3

  • Gurushankara HP, Krishnamurthy SV, Vasudev V (2007) Effect of malathion on survival, growth, and food consumption of Indian cricket frog (Limnonectus limnocharis) tadpoles. Arch Environ Contam Toxicol 52:251–256

    Article  CAS  Google Scholar 

  • Hashmi I, Khan MA, Jong-Guk K (2002) Growth response of a selected bacterial population (Pseudomonas) exposed to malathion. Pak J Biol Sci 5:699–703

    Article  Google Scholar 

  • Hashmi I, Khan MA, Kim JG (2004) Malathion degradation by Pseudomonas using activated sludge treatment system (Biosimulator). Biotechnology 3:82–89

    Article  Google Scholar 

  • Hinz B (2002a) Analytical method VAM 208-01: determination of malaoxon (CAS No. 1634-78-2) in Malafin DP formulations. Study: VAM 208-01.Cheminova

  • Hinz B (2002b) Validation of analytical method VAM 208-01 for determination of malaoxon (CAS No. 1634-78-2) in Malafin DP formulation. Cheminova A/S

  • Indeerjeet K, Mathur RP, Tandon SN, Prem D (1997) Identification of metabolites of malathion in plant, water and soil by GC-MS. Biomed Chromatogr 11:352–355

    Google Scholar 

  • Kamal Z, Fetyan NAH, Ibrahim MA, Sherif EN (2008) Biodegradation and detoxification of malathion by of Bacillus thuringiensis MOS-5. Austral J Basic Appl Sci 2(3):724–732

    Google Scholar 

  • Kim YH, Ahng JY, Hyeonmoon S, Lee J (2005) Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxisporum F. sp pisi cutinase. Chemosphere 60:1349–1355

    Article  CAS  Google Scholar 

  • Kumar R, Nagpure NS, Kushwaha B, Srivastava SK, Lakra WS (2010) Investigation of the genotoxicity of malathion to freshwater teleost fish Channa punctatus (bloch) using the micronucleus test and comet assay. Arch Environ Contam Toxicol 58:123–130

    Article  CAS  Google Scholar 

  • Kumari B, Guha A, Pathak MG, Bora TC, Roy MK (1998) Experimental biofilm and its application in malathion degradation. Folia Microbiol 43:27–30

    Article  CAS  Google Scholar 

  • Lauwer AM, Heinen W, Gorris M, Leon G, Chris VD (1990) Early stages in biofilm development in methanogenic fluidized-bed reactors. Appl Environ Microbiol 33:352–358

    Google Scholar 

  • Lewis DL, Paris DF, Baughman GL (1975) Transformation of malathion by a fungus Aspergillus Oryzae isolated from a freshwater pond. Bull Environ Contam Toxicol 13:596

    Article  CAS  Google Scholar 

  • Mohamed KZ, Ahmed MA, Fetyan NA, Elnagdy SM (2010) Isolation and molecular characterisation of malathion-degrading bacterial strains from waste water in Egypt. J Adv Res 1:145–149

    Article  Google Scholar 

  • Mostafa IY, Bahig MRE, Fakhr IMI, Adam Y (1972a) Metabolism of organophsphorus insecticides. XIV Malathion breakdown by soil fungi. Z Naturforsc 276:1115

    Google Scholar 

  • Mostafa IY, Fakhr IMI, Bahig ME (1972b) Metabolism of organophsphorus insecticidesXIII degaradation of malathion by rhizobium sp. Arch Environ Microbiol 86:221

    Article  CAS  Google Scholar 

  • Pillans PIB, Steohenson A, Folb PI (1988) Cyclophosphamide effects on fetal mouse cephalic acetylcholinesterase. Arch Environ Toxicol 62:230–231

    Article  CAS  Google Scholar 

  • Rogers KR, Wang Y, Mulchandani A, Mulchandani P, Chen W (1999) Organophosphorus hydrolase-based assay for organophosphate pesticides. Biotechnol Prog 15:517–521

    Article  CAS  Google Scholar 

  • Rosenberg A, Alexander M (1979) Microbial cleavage of various organophosphorus insecticides. Appl Environ Microbiol 37:886–891

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. CSH Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Senanayake N, Karalliedde L (1987) Neurotoxic effects of organophosphorus insecticides. N Engl J Med 316:761–763

    Article  CAS  Google Scholar 

  • Shan X, Junxin L, Lin L, Chuanling Q (2009) Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. J Environ Sci 21:76–82

    Article  Google Scholar 

  • Shimazu M, Mulchandani A, Chen W (2001) Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 76:318–324

    Article  CAS  Google Scholar 

  • Singh AK, Seth PK (1989) Degradation of malathion by microorganisms isolated from industrial effluents. Bull Environ Contam Toxicol 43:28–35

    Article  CAS  Google Scholar 

  • Singh B, Kaur J, Singh K (2011) 2,4,6-trinitrophenol degradation by Bacillus cereus isolated from a firing range. Biotechnol lett doi:10.1007/s10529-011-0726-1

  • Uygun U, O’ zkara R, O’zbey A, Koksel H (2007) Residue levels of malathion and fenitrothion and their metabolites in post harvest treated barley during storage and malting. Food Chem 100:1165–1169

    Article  CAS  Google Scholar 

  • Walker WW (1976) Chemical and microbiological degradation of malathion and parathion in an estuarine environment. J Environ Qual 5:210–216

    Article  CAS  Google Scholar 

  • Zweiner RJ, Ginsberg CK (1988) Organophosphate and Carbamate poisoning in infants and children. Pediatric 81:121–128

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank Dr. Ashwini kumar, Department of Chemistry, Punjabi university, Patiala, India, for his valuable help and technical support during HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashmir Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, B., Kaur, J. & Singh, K. Biodegradation of malathion by Brevibacillus sp. strain KB2 and Bacillus cereus strain PU. World J Microbiol Biotechnol 28, 1133–1141 (2012). https://doi.org/10.1007/s11274-011-0916-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0916-y

Keywords

Navigation