Skip to main content

Advertisement

Log in

Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Plant growth-promoting rhizobacteria (PGPR) are the rhizosphere bacteria that can enhance plant growth by a wide variety of mechanisms like phosphate solubilization, siderophore production, biological nitrogen fixation, rhizosphere engineering, production of 1-Aminocyclopropane-1-carboxylate deaminase (ACC), quorum sensing (QS) signal interference and inhibition of biofilm formation, phytohormone production, exhibiting antifungal activity, production of volatile organic compounds (VOCs), induction of systemic resistance, promoting beneficial plant-microbe symbioses, interference with pathogen toxin production etc. The potentiality of PGPR in agriculture is steadily increased as it offers an attractive way to replace the use of chemical fertilizers, pesticides and other supplements. Growth promoting substances are likely to be produced in large quantities by these rhizosphere microorganisms that influence indirectly on the overall morphology of the plants. Recent progress in our understanding on the diversity of PGPR in the rhizosphere along with their colonization ability and mechanism of action should facilitate their application as a reliable component in the management of sustainable agricultural system. The progress to date in using the rhizosphere bacteria in a variety of applications related to agricultural improvement along with their mechanism of action with special reference to plant growth-promoting traits are summarized and discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AHLs:

N-acyl homoserine lactones

ACC:

1-Aminocyclopropane-1-carboxylate

AFM:

Anti-fungal metabolite

DAPG:

2, 4-diacetylphloroglucinol

BYMV:

Bean yellow mosaic potyvirus

CSI:

Central insecticide board

ISR:

Induced systemic resistance

PO:

Peroxidise

PAL:

Phenylalanine ammonia-lyase

PGPR:

Plant growth-promoting rhizobacteria

PCBs:

Polychlorinated biphenyls

PPO:

Polyphenol oxidase

QS:

Quorum sensing

RFLP:

Restriction fragment length polymorphism

RZT:

Root zone temperature

VOCs:

Volatile organic compounds

YCF1:

Yeast cadmium factor protein

References

  • Ahanthem S, Jha DK (2007) Response of rice crop inoculated with arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria to different soil nitrogen concentrations. Mycorrhiza News 18(4):15–20

    Google Scholar 

  • Ahanthem S, Jha DK (2008) Interactions between Acaulospora and Azospirillum and their synergistic effect on rice growth at different sources and regimes of soil phosphorus. Mycorrhiza News 20(2):6–12

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34

    CAS  Google Scholar 

  • Ali K, Hj SZ (2010) Phytoremediation of heavy metals with several efficiency enhancer methods. Afr J Biotechnol 9(25):3689–3698

    Google Scholar 

  • Alstroem S (1991) Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J Gen Appl Microbiol 37(6):495–501

    Article  Google Scholar 

  • Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47(4):996–1006

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180. doi:10.1146/annurev.phyto.38.1.145

    Article  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67. doi:10.1023/A:1004326910584

  • Ardakani SS, Heydari A, Tayebi L, Mohammedi M (2010) Promotion of cotton seedlings growth characteristics by development and use of new bioformulations. Int J Bot 6(2):95–100

    Article  Google Scholar 

  • Aroca R, Ruiz-Lozano JM (2009) Induction of plant tolerance to semi-arid environments by beneficial soil microorganisms-a review. In: Lichtouse E (ed) Climate change, intercropping, pest control and beneficial microorganisms, sustainable agriculture reviews. Springer, The Netherlands 2:121–135

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81(6):673–677

    Google Scholar 

  • Babalola OO, Osir EO, Sanni AI, Odhaimbo GD, Bulimo WD (2003) Amplification of 1-aminocyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soils. Afr J Biotechnol 2(6):157–160

    CAS  Google Scholar 

  • Backman PA, Wilson M, Murphy JF (1997) Bacteria for biological control of plant diseases. In: Rechcigl NA, Rechcigl JE (eds) Environmentally safe approaches to crop disease control. Lewis Publishers, Boca Raton, FL, pp 95–109

    Google Scholar 

  • Bakker PAHM, Pieterse CMJ, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97(2):239–243

    Article  Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazatrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25(10):2397–2406. doi:10.1023/A:1020890311499

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Aguilar CA (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778

    Article  CAS  Google Scholar 

  • Baset Mia MA, Shamsuddin ZH, Wahab Z, Marziah M (2010) Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured musa plantlets under nitrogen-free hydroponics condition. Aust J Crop Sci 4(2):85–90

    CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) Chapter two—How the plant growth-promoting bacterium Azospirillum promotes plant growth–a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, Lifshitz R (1993) Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE (eds) Methods in plant molecular biology and biotechnology. CRC Press, BocaRaton, FL, pp 331–345

    Google Scholar 

  • Bashan Y, Puente ME, de-Bashan LE, Hernandez JP (2008) Environmental uses of plant growth-promoting bacteria. In: Barka EA, Clement C (eds) Plant-microbe interactions. Trivandrum, Kerala, India, pp 69–93

  • Beattie GA (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, The Netherlands, pp 1–56. doi: 10.1007/978-1-4020-4538-7_1

  • Belimov AA et al (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    Article  CAS  Google Scholar 

  • Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol 11(5):557–574

    Article  Google Scholar 

  • Bevivino A et al (1998) Characterization of a free-living maize rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol Ecol 27(3):225–237. doi:10.1111/j.15746941.1998.tb00539.x

    Article  CAS  Google Scholar 

  • Bharathi S (2004) Development of botanical formulations for the management of major fungal diseases of tomato and onion. PhD Thesis, Tamil Nadu Agricultural University, Coimbatore, India, p 152

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  Google Scholar 

  • Boddey RM, Baldani VLD, Baldani JI, Dobereiner J (1986) Effect of inoculation of Azospirillum spp. on nitrogen accumulation by field-grown wheat. Plant Soil 95(1):109–121. doi: 10.1007/BF02378857

    Google Scholar 

  • Boddey RM, Polidoro JC, Resende AS, Alves BJR, Urquiaga S (2001) Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugar cane and other grasses. Aust J Plant Physiol 28:889–895

    Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880. doi:10.1007/s00253-006-0731-9

    Article  CAS  Google Scholar 

  • Bringhurst RM, Cardon ZG, Gage DJ (2001) Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci USA 98:4540–4545

    Article  CAS  Google Scholar 

  • Cakmakci R, Donmez F, Aydin A, Sahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38(6):1482–1487

    Article  CAS  Google Scholar 

  • Cao L, Qiu Z, Dai X, Tan H, Lin Y, Zhou S (2004) Isolation of endophytic actinomycetes from roots and leaves of banana (Musa acuminata) plants and their activities against Fusarium oxysporum f. sp. cubense. World J Microbiol Biotechnol 20:501–504

    Article  CAS  Google Scholar 

  • Cardoso EJBN, Freitas SS (1992) A rizosfera. In: Cardoso EJBN, Tsai SM, Neves PCP (eds) Microbiologia do solo. Sociedade Brasileira de Ciencia do Solo, Campinas, pp 41–57

    Google Scholar 

  • Carson KC, Meyer JM, Dilworth MJ (2000) Hydroxamate siderophores of root nodule bacteria. Soil Biol Biochem 32:11–21

    Article  CAS  Google Scholar 

  • Castro RO, Cantero EV, Bucio JL (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signalling. Plant Signal Behav 3(4):263–265

    Article  Google Scholar 

  • Castro RO, Cornejo HAC, Rodriguez LM, Bucio JL (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4(8):701–712

    Article  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Chabot R, Beauchamp CJ, Kloepper JW, Antoun H (1998) Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Soil Biol Biochem 30:1615–1618

    Article  Google Scholar 

  • Chandler D, Davidson G, Grant WP, Greaves J, Tatchell GM (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Tech 19:275–283

    Article  CAS  Google Scholar 

  • Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38(4):392–397. doi: 10.1099/00207713-38-4-392

  • Chen X, Schauder S, Potier N et al (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549

    Article  CAS  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918

    Article  CAS  Google Scholar 

  • Chet I, Chernin L (2002) Biocontrol, microbial agents in soil. In: Bitton G (ed) Encyclopedia of environmental microbiology. Willey, New York, USA, pp 450–465

    Google Scholar 

  • Chew K (2002) Georgics. Hackett Publishing Company, Indianapolis, USA, p 152

    Google Scholar 

  • Chin-A-Woeng TF, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV (2001) Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid producing Pseudomonas spp. strains. Mol Plant Microbe Interact 14(8):1006–1015

    Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Jerzy N, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of Action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  Google Scholar 

  • Cook RJ (2002) Advances in plant health management in the twentieth century. Annu Rev Phytopathol 38:95–116

    Article  Google Scholar 

  • Damayanti TA, Pardede H, Mubarik NR (2007) Utilization of root-colonizing bacteria to protect hot-pepper against Tobacco Mosaic Tobamovirus. Hayati J Biosci 14(3):105–109

    Google Scholar 

  • De La Fuente L, Landa BB, Weller DM (2006) Host crop affects rhizosphere colonization and competitiveness of 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 96:751–762. doi:10.1094/PHYTO-96-0751

    Article  CAS  Google Scholar 

  • de Lajudie P, Laurent-Fulele E, Willems A et al (1998a) Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290

    Article  Google Scholar 

  • de Lajudie P, Willems A, Nick G, Moreira F et al (1998b) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382. doi:10.1099/00207713-48-2-369

    Google Scholar 

  • de Vasconcellos RLF, Cardoso EJBN (2009) Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. Biocontrol 54:807–816. doi:10.1007/s10526-009-9226-9

    Article  Google Scholar 

  • de Vasconcellos RLF, da Silva MCP, Ribeiro CM, Cardoso EJBN (2010) Isolation and screening for plant growth-promoting (PGP) actinobacteria from Araucaria angustifolia rhizosphere soil. Sci Agric 67:743–746

    Article  Google Scholar 

  • Denton B (2007) Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. MMG 445 Basic Biotechnol 3:1–5

    Google Scholar 

  • Desbrosses G, Contesto C, Varoquaux F, Galland M, Touraine B (2009) PGPR-Arabidopsis interactions is a useful system to study signalling pathways involved in plant developmental control. Plant Signal Behav 4:321–323

    Article  CAS  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  Google Scholar 

  • Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293–299

    Article  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D et al (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Dobereiner J (1997) Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol Biochem 29(5):771–774

    Article  Google Scholar 

  • Dong Z, McCully ME, Canny MJ (1997) Does Acetobacter diazotrophicus live and move in the xylem of sugarcane stems? Anatomical and physiological data. Ann Bot 80:147–158

    Article  Google Scholar 

  • Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98

    Article  CAS  Google Scholar 

  • Duan J, Muller KM, Charles TC, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436. doi:10.1007/s00248-008-9407-6

    Article  CAS  Google Scholar 

  • Dubey SK (1996) Combined effect of Bradyrhizobium japonicum and phosphate-solubilizing Pseudomonas striata on nodulation, yield attributes and yield of rainfed soybean (Glycine max) under different sources of phosphorus in Vertisols. Ind J Microbiol 33:61–65

    Google Scholar 

  • Elbadry M, Taha RM, Eldougdoug KA, Gamal-Eldin H (2006) Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria. J Plant Dis Protect 113(6):247–251

    Google Scholar 

  • Elliot LF, Lynch JM (1984) Pseudomonads as a factor in the growth of winter wheat (Triticum aestivum L.) Soil Biol Biochem 16:69–71. doi:10.1016/0038-0717(84)90128-7

  • Elliot LF, Lynch JM (1995) The international workshop on establishment of microbial inocula in soils: cooperative research project on biological resource management of the organization for economic cooperation and development (OECD). Am J Alt Agric 10:50–73

    Article  Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agent of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520

    Article  CAS  Google Scholar 

  • Erturk Y, Ercisli S, Haznedar A, Cakmakci R (2010) Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biol Res 43:91–98

    Article  Google Scholar 

  • Esitken A, Karlidag H, Ercisli S, Turan M, Sahin F (2003) The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Aust J Agric Res 54(4):377–380

    Google Scholar 

  • Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hort 110:324–327

    Article  CAS  Google Scholar 

  • Estrada de los Santos P, Bustillos-Cristales MR, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microb 67:2790–2798

    Article  CAS  Google Scholar 

  • Farmer EE (2001) Surface-to-air signals. Nature 411:854–856

    Article  CAS  Google Scholar 

  • Farwell AJ et al (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147:540–545

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465:219–235

    Article  CAS  Google Scholar 

  • Forlani GM, Mantelli M, Nielsen E (1999) Biochemical evidence for multiple acetoin-forming enzymes in cultured plant cells. Phytochemistry 50:255–262

    Article  CAS  Google Scholar 

  • Franco-Correa M, Quintana A, Duque C et al (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Article  Google Scholar 

  • Fuentes-Ramirez LE, Bustillos-Cristales R, Tapia-Hernandez A et al (2001) Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Micr 51:1305–1314

    CAS  Google Scholar 

  • Garcia de Salamone IE, Dobereiner J, Urquiaga S, Boddey RM (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol Fertil Soils 23:249–256. doi:10.1007/BF00335952

    Article  CAS  Google Scholar 

  • Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  CAS  Google Scholar 

  • Ghorbanpour MNM, Hosseini S, Rezazadeh M, Omidi KK, Etminan A (2010) Hyoscyamine and scopolamine production of black henbane (Hyoscyamus niger) infected with Pseudomonas putida and P. fluorescens strains under water deficit stress. Planta Med 76(12):167

    Article  Google Scholar 

  • Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281. doi:10.1016/S0981-9428(03)00019-6

    Article  CAS  Google Scholar 

  • Glass ADM (1989) Plant nutrition: an introduction to current concepts. Jones and Bartlett Publishers, Boston, p 234

    Google Scholar 

  • Glass ADM, Britto DT, Kaiser BN et al (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth-promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Gomes RC, Semedo LTAS, Soares RMA, Alviano CS, Linhares LF, Coelho RRR (2000) Chitinolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol. Lett Appl Microbiol 30:146–150

    Article  CAS  Google Scholar 

  • Gouws LM (2009) The molecular analysis of the effects of lumichrome as a plant growth promoting substance. Dissertation, University of Stellenbosch, South Africa

  • Govindasamy V, Senthilkumar M, Gaikwad K, Annapurna K (2008) Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Curr Microbiol 57(4):312–317

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Bioch 39:11–17

    Article  CAS  Google Scholar 

  • Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1999) Soil microbial community structure: Effects of substrate loading rates. Soil Biol Biochem 31:145–153. doi:10.1016/S0038-0717(98)00117-5

    Article  CAS  Google Scholar 

  • Guerinot ML, Chelm BK (1984) Isolation and expression of the Bradyrhizobium japonicum adenylate cyclase gene (cya) in Escherichia coli. J Bacteriol 159:1068–1071

    CAS  Google Scholar 

  • Gupta CP, Dubey RC, Maheshwari DK (2002) Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol Fertl Soils 35:399–405. doi:10.1007/s00374-002-0486-0

    Article  CAS  Google Scholar 

  • Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plantarum 111:206–211

    Article  Google Scholar 

  • Gyaneshwar P et al (1999) Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol Lett 171:223–229

    Article  CAS  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Chakarbartty PK (1991) Solubilization of inorganic phosphates by Bradyrhizobium. Ind J Exp Biol 29:28–31

    CAS  Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242

    Article  CAS  Google Scholar 

  • Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang Y, Song W (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28(1):66–76

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598. doi:10.1007/s13213-010-0117-1

    Article  Google Scholar 

  • Hellriegel H, Wilfarth H (1888) Untersuchungen uber die Stickstoffnahrung der Gramineen und Leguminosen. Beilageheft zu der Zeitschrift des Vereins fur Rubenzucker-Industrie Deutschen Reichs, p 234

  • Herman MAB, Nault BA, Smart CD (2008) Effects of plant growth-promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. Crop Prot 27:996–1002. doi:10.1016/j.cropro.2007.12.004

    Article  Google Scholar 

  • Herschkovitz Y, Lerner A, Davidov Y, Rothballer M, Hartmann A, Okon Y, Jurkevitch E (2005) Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Microb Ecol 50(2):277–288

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berucksichtigung der Grundungung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78

    Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Holden MTG et al (1999) Quorum-sensing cross-talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 33:1254–1266

    Article  CAS  Google Scholar 

  • Holguin G, Glick BR (2001) Expression of the ACC Deaminase Gene from Enterobacter cloacae UW4 in Azospirillum brasilense. Microb Ecol 41(3):281–288

    CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wikins co, Baltimore, USA, p 566

    Google Scholar 

  • Hurek T, Handley LL, Reinhold-Hurek B, Piche Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242

    Article  CAS  Google Scholar 

  • Hynes RK, Leung GC, Hirkala DL, Nelson LM (2008) Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil and chickpea grown in western Canada. Can J Microbiol 54:248–258

    Article  CAS  Google Scholar 

  • Isopi R, Fabbri P, Del-Gallo M, Puppi G (1995) Dual inoculation of Sorghum bicolor (L.) Moench ssp. bicolor with vesicular arbuscular mycorrhizas and Acetobacter diazotrophicus. Symbiosis 18:43–55

    Google Scholar 

  • Jaleel CA et al (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B Biointerfaces 60:7–11

    Article  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Gomathinayagam M, Panneerselvam R (2009) Traditional and non-traditional plant growth regulators alter phytochemical constituents in Catharanthus roseus. Process Biochem 44:205–209. doi:10.1016/j.procbio.2008.10.012

    Article  CAS  Google Scholar 

  • James EK, Olivares FL, Baldani JI, Dobereiner J (1997) Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor L. Moench. J Exp Bot 48:785–797

    Article  CAS  Google Scholar 

  • James EK, Olivares FL, de Oliveira ALM, dos Reis FB, da Silva LG, Reis VM (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760

    CAS  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N et al. (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67 Mol Plant Microbe Interact 15:894–906

  • Jing YD, He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci 8(3):192–207

    Article  CAS  Google Scholar 

  • Joo GJ, Kin YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43(6):510–515

    CAS  Google Scholar 

  • Joshi P, Bhatt AB (2011) Diversity and function of plant growth promoting rhizobacteria associated with wheat rhizosphere in North Himalayan region. Int J Environ Sci 1(6):1135–1143

    Google Scholar 

  • Kalita RB, Bhattacharyya PN, Jha DK (2009) Effects of plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi on Fusarium oxysporum causing brinjal wilt. JAPS 4:29–35

    Google Scholar 

  • Kapulnik Y, Okon Y, Henis Y (1985) Changes in root morphology of wheat caused by Azospirillum inoculation. Can J Microbiol 31:881–887. doi:10.1139/m85-165

    Google Scholar 

  • Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hort 114(1):16–20

    Article  CAS  Google Scholar 

  • Kaushik R, Saxena AK, Tilak KVBR (2000) Selection of Tn5:lacZ mutants isogenic to wild type Azospirillum brasilense strains capable of growing at sub-optimal temperature. World J Microbiol Biotechnol 16:567–570. doi:10.1023/A:1008901331991

    Article  Google Scholar 

  • Kaymak HC (2011) Potential of PGPR in Agricultural Innovations. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Microbiol monographs. Springer, Berlin 18:45–79

  • Kempster VN, Scott ES, Davies KA (2002) Evidence for systemic, cross-resistance in white clover (Trifolium repens) and annual medic (Medicago truncatula var truncatula) induced by biological and chemical agents. Biocontrol Sci Technol 12(5):615–623. doi:10.1080/0958315021000016270

    Article  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(3):473–480

    Article  CAS  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE (2011) Phloroglucinol mediates cross-talk between the pyoluteorin and 2, 4 diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol 81(2):395–414. doi:10.1111/j.1365-2958.2011.07697.x

    Article  CAS  Google Scholar 

  • Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) FZB24 Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachr Bayer 1:72–93

    Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87. doi:10.1007/s003740050347

    Article  CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria. Gilbert-Clarey, Tours, pp 879–882

    Google Scholar 

  • Kloepper JW, Schroth MN (1981) Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71:1020–1024

    Article  Google Scholar 

  • Kloepper JW, Tuzun S, Liu L, Wei G (1993) Plant growth-promoting rhizobacteria as inducers of systemic disease resistance. In: Lumsden RD, Waughn JL (eds) Pest management: biologically based technologies. American Chemical Society Books, Washington, DC, pp 156–165

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266

    Article  CAS  Google Scholar 

  • Kloepper JW, Gutierrez-Estrada A, Mclnroy JA (2007) Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can J Microbiol 53(2):159–167

    Article  CAS  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266

    Article  CAS  Google Scholar 

  • Kumar V, Narula N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol Fertil Soils 28:301–305. doi:10.1007/s003740050497

    Article  CAS  Google Scholar 

  • Kumar A, Salini P, Shrivastava JN (2009) Production of peptide antifungal antibiotic and biocontrol activity of Bacillus subtilis. Ind J Exp Biol 47:57–62

    Google Scholar 

  • Landa BB, Mavrodi OV, Schroeder KL, Allende-Molar R, Weller DM (2006) Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp., in two soils after a century of wheat and flax monoculture. FEMS Microbiol Ecol 55:351–368

    Article  CAS  Google Scholar 

  • Lewis JA (1991) Formulation and delivery system of biocontrol agents with emphasis on fungi Beltsville symposia in agricultural research. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth 14:279–287

  • Li Q, Saleh-Lakha S, Glick BR (2005) The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Can J Microbiol 51:511–514

    Article  CAS  Google Scholar 

  • Lindstrom K (1989) Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Bacteriol 39:365–367

    Article  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85:695–698

    Article  Google Scholar 

  • Lucas GJA, Probanza A, Ramos B, Palomino MR, Gutierrez Manero FJ (2004) Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie 24:169–176

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  Google Scholar 

  • Lugtenberg BJ, Chin-A-Woeng TF, Bloemberg GV (2002) Microbe–plant interactions: principles and mechanisms. Antonie Leeuwenhoek 81:373–383

    Article  CAS  Google Scholar 

  • Ma W, Zalec K, Glick BR (2001) Biological activity and colonization pattern of the bioluminescence-labeled plant growth-promoting bacterium Kluyvera ascorbata SUD165/26. FEMS Microbiol Ecol 35:137–144

    Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum Bovver viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278

    Article  CAS  Google Scholar 

  • Maiti B, Shekar M, Khusiramani R, Karunasagar I, Karunasagar I (2009) Evaluation of RAPD-PCR and protein profile analysis to differentiate Vibrio harveyi strains prevalent along the southwest coast of India. J Genet 88(3):273–279

    Article  CAS  Google Scholar 

  • Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80

    Article  CAS  Google Scholar 

  • Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37–44

    Article  CAS  Google Scholar 

  • Manjula K, Podile AR (2001) Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF1. Can J Microbiol 47(7):618–625. doi:1139/w01-057

    CAS  Google Scholar 

  • Mansoor F, Sultana V, Haque SE (2007) Enhancement of biocontrol potential of Pseudomonas aeroginosa and Paecilomyces lilacinus against root rot of mungbean by a medicinal plant Launaea nudicaulis L. Pak J Bot 39(6):2113–2119

    Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34. doi:10.1093/jxb/erh010

    Article  CAS  Google Scholar 

  • Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung been cuttings. J Plant Growth Regul 18:49–53

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42(6):565–572. doi:10.1016/j.plaphy.2004.05.009

    Article  CAS  Google Scholar 

  • McCully ME (2001) Niches for bacterial endophytes in crop plants: a plant biologist’s view. Aust J Plant Physiol 28:983–990

    Google Scholar 

  • Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51(3):326–335

    Article  Google Scholar 

  • Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 472:110–117

    Article  Google Scholar 

  • Merzaeva OV, Shirokikh IG (2006) Colonization of plant rhizosphere by actinomycetes of different genera. Microbiology 75:226–230. doi:10.1134/S0026261706020184

    Article  CAS  Google Scholar 

  • Minorsky PV (2008) On the inside. Plant Physiol 146:323–324

    Article  CAS  Google Scholar 

  • Mirza MS, Mehnaz S, Normand P et al (2006) Molecular characterization and PCR detection of a nitrogen fixing Pseudomonas strain promoting rice growth. Biol Fertil Soils 43:163–170. doi:10.1007/s00374-006-0074-9

    Article  CAS  Google Scholar 

  • Mishra M, Kumar U, Mishra PK, Prakash V (2010) Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Adv Biol Res 4(2):92–96

    Google Scholar 

  • Montesinos E (2003) Plant-associated microorganisms: a view from the scope of microbiology. Int Microbiol 6:221–223. doi:10.1007/s10123-003-0141-0

    Article  CAS  Google Scholar 

  • Mrkovacki N, Milic V (2001) Use of Azotobacter chroococcum as potentially useful in agricultural application. Ann Microbiol 51:145–158

    Google Scholar 

  • Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW (2000) Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis 84:779–784

    Article  Google Scholar 

  • Nahas E (1996) Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J Microbiol Biotechnol 12:567–572. doi:10.1007/BF00327716

    Article  CAS  Google Scholar 

  • Nakkeeran S, Fernando WGD, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Google Scholar 

  • Nandakumar R, Babu S, Viswanathan R, Sheela J, Raguchander T, Samiyappan R (2001) A new bio-formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. Biocontrol 46(4):493–510. doi:10.1023/A:1014131131808

    Article  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    Article  CAS  Google Scholar 

  • Narula N, Deubel A, Gans W, Behl RK, Merbach W (2006) Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant soil Environ 52(3):119–129

    CAS  Google Scholar 

  • Nick G, de Lajudie P, Eardly BD et al (1999) Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49:1359–1368

    Article  CAS  Google Scholar 

  • Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283

    Article  CAS  Google Scholar 

  • Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Defago G (2001) Biotic factors affecting expression of the 2, 4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881. doi:10.1094/PHYTO.2001.91.9.873

    Article  CAS  Google Scholar 

  • Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC (1994) Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44:511–522

    Article  CAS  Google Scholar 

  • Nowak J (1998) Benefits of in vitro “biotization” of plant tissue cultures with microbial inoculants. In Vitro Cell Dev Biol Plant 34:122–130

    Article  Google Scholar 

  • Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15:369–372

    Article  CAS  Google Scholar 

  • Omar MNA, Mahrous NM, Hamouda AM (1996) Evaluating the efficiency of inoculating some diazatrophs on yield and protein content of 3 wheat cultivars under graded levels of nitrogen fertilization. Ann Agric Sci 41:579–590

    Google Scholar 

  • Osborn AM, Moore ER, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2(1):39–50

    Article  CAS  Google Scholar 

  • Pandey A, Sharma E, Palni LMS (1998) Influence of bacterial inoculation on maize in upland farming systems of the Sikkim Himalaya. Soil Biol Biochem 30:379–384. doi:10.1016/S0038-0717(97)00121-1

    Article  CAS  Google Scholar 

  • Park KS, Kloepper JW (2000) Activation of PR-1a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol Control 18:2–9. doi:10.1006/bcon.2000.0815

    Article  CAS  Google Scholar 

  • Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid like compounds by rhizobacteria. J Appl Microbiol 86:36–44

    Article  CAS  Google Scholar 

  • Pathma J, Kennedy RK, Sakthivel N (2011) Mechanisms of fluorescent pseudomonads that mediate biological control of phytopathogens and plant growth promotion of crop plants. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 77–105. doi: 10.1007/978-3-642-20332-9-4

  • Pengnoo A, Kusongwiriyawong C, Nilratana L, Kanjanamaneesathian M (2000) Greenhouse and field trials of the bacterial antagonists in pellet formulations to suppress sheath blight of rice caused by Rhizoctonia solani. Biocontrol 45(2):245–256. doi:10.1023/A:1009948404423

    Article  Google Scholar 

  • Phillips DA (1980) Efficiency of symbiotic nitrogen fixation in legumes. Annu Rev Plant Physiol 31:29–49

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Johan A, Pelt V, Saskia CM, Wees V et al (2001) Rhizobacteria-mediated induced systemic resistance: triggering, signaling and expression. Eur J Plant Pathol 107(1):51–61. doi:10.1023/A:1008747926678

    Article  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Reed ML, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T, Gillis M et al (1993) Azoarcus gen. nov., nitrogen-fixing Proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 43:574–584

    Article  Google Scholar 

  • Ren D, Sims JJ, Wood TK (2001) Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ Microbiol 3(11):731–736

    Article  CAS  Google Scholar 

  • Ribaudo C, Krumpholz E, Cassan F, Bottini R, Cantore M, Cura A (2006) Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul 24:175–185. doi:10.1007/s00344-005-0128-5

    Article  CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi:10.1007/s11104-009-9895-2

    Article  CAS  Google Scholar 

  • Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28:829–836. doi:10.1071/PP01045

    Google Scholar 

  • Roberts SC, Shuler ML (1997) Large scale plant cell culture. Curr Opin Biotechnol 8:154–159

    Article  CAS  Google Scholar 

  • Rome S, Fernandez MP, Brunel B, Normand P, Cleyet-Marel JC (1996) Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Bacteriol 46:972–980

    Article  CAS  Google Scholar 

  • Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134:312–319

    Article  CAS  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383. doi:10.1007/s11104-009-0001-6

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932. doi:10.1073/pnas.0730845100

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Kloepper JW et al (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  Google Scholar 

  • Ryu CM, Kim J, Choi O, Kim SH, Park CS (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control 39:282–289

    Article  Google Scholar 

  • Sabaratnam S, Traquair JA (2002) Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol Control 23:245–253

    Article  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648

    Article  CAS  Google Scholar 

  • Saleh SS, Glick BR (2001) Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and Pseudomonas putida UW4. Can J Microbiol 47:698–705. doi:10.1139/w01-072

    CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–1292

    Article  CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria through fatty acid analysis. In: Klement Z, Rudolph K, Sands D (eds) Methods in phytobacteriology. Akademiai Kiato, Budapest, pp 199–204

    Google Scholar 

  • Schippers B et al (1988) Biological control of pathogens with rhizobacteria. Philos Trans R Soc B-Biol Sci 318:283–293. doi:10.1098/rstb.1988.0010

    Article  Google Scholar 

  • Scholla MH, Elkan GH (1984) Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int J Syst Bacteriol 34:484–486

    Article  Google Scholar 

  • Segovia L, Young JPW, Matinez-Romero E (1993) Reclassification of American Rhizobium leguminosarum Biovar Phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377

    Article  CAS  Google Scholar 

  • Sekar S, Kandavel D (2010) Interaction of plant growth promoting rhizobacteria (PGPR) and endophytes with medicinal plants–new avenues for phytochemicals. J Phytol 2:91–100

    Google Scholar 

  • Sgroy V, Cassan F, Masciarelli O et al (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381. doi:10.1007/s00253-009-2116-3

    Article  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA, Khalid A (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975

    Article  CAS  Google Scholar 

  • Sharaf-Eldin M, Elkholy S, Fernandez JA et al (2008) Bacillus subtilis FZB24 affects flower quantity and quality of Saffron (Crocus sativus). Planta Med 74:1316–1320

    Article  CAS  Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S, Shaukat SS (2001) Use of rhizobacteria in the control of root rot-root knot disease complex of mungbean. J Phytopathol 149:337–346

    Article  Google Scholar 

  • Singh S, Kapoor KK (1999) Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol Fertil Soils 28:139–144. doi:10.1007/s003740050475

    Article  CAS  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  Google Scholar 

  • Sousa CS, Soares ACF, Garrido MS (2008) Characterization of streptomycetes with potential to promote plant growth and biocontrol. Sci Agric 65:50–55. http://dx.doi.org/10.1590/S0103-90162008000100007

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. In: Unden F (ed) FEMS microbiol rev. Blackwell Publishing Ltd., New York pp 1–24. doi:10.1111/j.1574-6976.2007.00072.x

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  Google Scholar 

  • Stein T, Hayen-Schneg N, Fendrik I (1997) Contribution of BNF by Azoarcus sp. BH72 in Sorghum vulgare. Soil Biol Biochem 29:969–971

    Article  CAS  Google Scholar 

  • Stout MJ, Zehnder GW, Baur ME (2002) Potential for the use of elicitors of plant defence in arthropode management programs. Arch Insect Biochem Physiol 51:222–235. doi:10.1002/arch.10066

    Article  CAS  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. J Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Stutz EW, Defago G, Kern H (1986) Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76:181–185. doi:10.1094/Phyto-76-181

    Article  Google Scholar 

  • Sudhakar P, Chattopadhyay GN, Gangwar SK, Ghosh JK (2000) Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J Agric Sci 134:227–234

    Article  Google Scholar 

  • Sultana V, Ara J, Parveen G, Haque SE, Ahmad VU (2006) Role of Crustacean chitin, fungicides and fungal antagonists on the efficacy of Pseudomonas aeruginosa in protecting Chilli from root rot. Pak J Bot 38(4):1323–1331

    Google Scholar 

  • Sundheim L, Poplawsky AR, Ellingboe AH (1988) Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species. Physiol Mol Plant Pathol 33:483–491

    Article  CAS  Google Scholar 

  • Suslow TV, Kloepper JW, Schroth MN, Burr TJ (1979) Beneficial bacteria enhance plant growth. Calif Agric 33:15–17

    Google Scholar 

  • Swain MR, Naskar SK, Ray RC (2007) Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Pol J Microbiol 56:103–110

    CAS  Google Scholar 

  • Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385. doi:10.1023/A:1023901107182

    Article  CAS  Google Scholar 

  • Terkina IA, Parfenova VV, Ahn TS (2006) Antagonistic activity of actinomycetes of Lake Baikal. Appl Biochem Microbiol 42:173–176

    Article  CAS  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Tisdale SL, Nelson WL (1975) Soil fertility and fertilizers, 3rd edn. Macmillan Publishing, New York, p 694

    Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2005) Carrier-based preparations of plant growth-promoting bacterial inoculants suitable for use in cooler regions. World J Microbiol Biotechnol 21:941–945. doi:10.1007/s11274-004-6820-y

    Article  Google Scholar 

  • van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254. doi:10.1007/s10658-007-9165-1

    Article  CAS  Google Scholar 

  • Velazquez E, Igual JM, Willems A et al (2001) Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51:1011–1021

    Article  CAS  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Article  CAS  Google Scholar 

  • Verma JP et al (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5:954–983

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • von Bodman SB, Bauer WD, Coplin DL (2003) Quorum-sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  CAS  Google Scholar 

  • Wang ET, Martinez-Romero E (2000) Sesbania herbacea-Rhizobium huautlense nodulation in flooded soils and comparative characterization of S. herbacea-nodulating rhizobia in different environments. Microb Ecol 40:25–32

    CAS  Google Scholar 

  • Wei L, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86:221–224

    Article  Google Scholar 

  • Weller DM (1988) Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407. doi:10.1146/annurev.py.26.090188.002115

    Article  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Onckelen HV, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151. doi:10.1016/S0065-2113(08)60948-7

    Article  CAS  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72(2):1129–1134. doi:10.1128/AEM.72.2.1129-1134

    Article  CAS  Google Scholar 

  • Yamada Y, Nihira T (1998) Microbial hormones and microbial chemical ecology. In: Barton DHR, Nakanishi K (ed) Comprehensive natural products chemistry. Elsevier Sciences, Amsterdam 8:377–413

  • Zahir ZA, Muhammad A, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168. doi:10.1016/S0065-2113(03)81003-9

    Article  CAS  Google Scholar 

  • Zaied KA, El-Diasty ZM, El-Rhman MMA, El-Sanossy ASO (2009) Effect of horizontal DNA transfer between Azotobacter strains on protein patterns of Azotobacter transconjugants and biochemical traits in bioinoculated Okra (Abelmoschus Esculentus, L.). Aust J Basic Appl Sci 3(2):748–760

    Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Article  Google Scholar 

  • Zhang LH, Dong YH (2004) Quorum sensing and signal interference: diverse implications. Mol Microbiol 53:1563–1571

    Article  CAS  Google Scholar 

  • Zhang F, Dasthi N, Hynes RK, Smith DL (1996) Plant growth promoting rhizobacteria and Soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:453–459

    Article  Google Scholar 

  • Zhang H et al (2003) Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate accumulating microorganism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53:1155–1163. doi:10.1099/ijs.0.02520-0

    Article  CAS  Google Scholar 

  • Zhao J, Zhou L, Wub J (2010) Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by polysaccharide–protein fractions of plant growth-promoting rhizobacterium Bacillus cereus. Process Biochem 45:1517–1522. doi:10.1016/j.procbio.2010.05.034

    Article  CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33(3):406–413

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Science and Technology (DST), Govt. of India, New Delhi for financial assistance in the form of a research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Jha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, P.N., Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28, 1327–1350 (2012). https://doi.org/10.1007/s11274-011-0979-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0979-9

Keywords

Navigation