Skip to main content

Advertisement

Log in

Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This paper presents the effects of various phosphorus concentrations (10, 50, 250 and 500 mg l−1 K2HPO4) on the biomass production and composition of Arthrospira (Spirulina) platensis in relation to light intensity (24, 42 and 60 μE m−2 s−1). The maximum biomass production was 3,592 ± 392 mg l−1 and this was observed in 250 mg l−1 K2HPO4 at 60 μE m−2 s−1 light intensity after 32 days of cultivation. A maximum specific growth rate (μmax) of 0.55 d−1 was obtained in 500 mg l−1 K2HPO4 at 60 μE m−2 s−1. The protein, lipid and chlorophyll contents of the biomass varied from 33.59 to 60.57 %, 5.34 to 13.33 % and 0.78 to 2.00 %, respectively. The most significant finding was that phosphorus limitation (10 mg l−1 K2HPO4) caused a drastic increase of the carbohydrate content (59.64 %). The effect of phosphorus limitation on the carbohydrate content was independent of the light intensity. The accumulated carbohydrates are proposed to be used as substrate for biofuel generation via one of the appropriate biomass energy conversion technologies. Also, it was observed that phosphorus removal is a function of biomass density, phosphorus concentration and light intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen MM, Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Microbiol 69(2):114–120. doi:10.1007/bf00409755

    Article  CAS  Google Scholar 

  • APHA (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  • Cade-Menun BJ, Paytan A (2010) Nutrient temperature and light stress alter phosphorus and carbon forms in culture-grown algae. Mar Chem 121(1–4):27–36. doi:10.1016/j.marchem.2010.03.002

    Article  CAS  Google Scholar 

  • Carvalho A, Silva S, Baptista J, Malcata F (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89(5):1275–1288. doi:10.1007/s00253-010-3047-8

    Article  CAS  Google Scholar 

  • Çelekli A, Yavuzatmaca M, Bozkurt H (2009) Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes. Bioresour Technol 100(14):3625–3629. doi:10.1016/j.biortech.2009.02.055

    Article  Google Scholar 

  • Cohen Z, Vonshak A, Richmond A (1987) Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry 26(8):2255–2258. doi:10.1016/s0031-9422(00)84694-4

    Article  CAS  Google Scholar 

  • Colla LM, Oliveira Reinehr C, Reichert C, Costa JAV (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour Technol 98(7):1489–1493. doi:10.1016/j.biortech.2005.09.030

    Article  CAS  Google Scholar 

  • Costa JAV, Linde GA, Atala DIP, Mibielli GM, Krüger RT (2000) Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World J Microbiol Biotechnol 16(1):15–18. doi:10.1023/a:1008992826344

    Article  Google Scholar 

  • Danesi EDG, Rangel-Yagui CO, Carvalho JCM, Sato S (2004) Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenerg 26(4):329–335. doi:10.1016/s0961-9534(03)00127-2

    Article  CAS  Google Scholar 

  • de la Noüe J, Bassères A (1989) Biotreatment of anaerobically digested swine manure with microalgae. Biological Wastes 29(1):17–31. doi:10.1016/0269-7483(89)90100-6

    Article  Google Scholar 

  • Dean AP, Estrada B, Nicholson JM, Sigee DC (2008a) Molecular response of Anabaena flos-aquae to differing concentrations of phosphorus: a combined Fourier transform infrared and X-ray microanalytical study. Phycol Res 56(3):193–201. doi:10.1111/j.1440-1835.2008.00501.x

    Article  CAS  Google Scholar 

  • Dean AP, Nicholson JM, Sigee DC (2008b) Impact of phosphorus quota and growth phase on carbon allocation in Chlamydomonas reinhardtii: an FTIR microspectroscopy study. Eur J Phycol 43(4):345–354. doi:10.1080/09670260801979287

    Article  CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour Technol 101(6):1611–1627. doi:10.1016/j.biortech.2009.09.043

    Google Scholar 

  • Demirbas A, Fatih Demirbas M (2011) Importance of algae oil as a source of biodiesel. Energ Convers Manage 52(1):163–170. doi:10.1016/j.enconman.2010.06.055

    Article  Google Scholar 

  • Desmorieux H, Madiouli J, Herraud C, Mouaziz H (2010) Effects of size and form of Arthrospira Spirulina biomass on the shrinkage and porosity during drying. J Food Eng 100(4):585–595. doi:10.1016/j.jfoodeng.2010.03.021

    Article  Google Scholar 

  • Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Apll Energ 88(10):3331–3335. doi:10.1016/j.apenergy.2011.03.012

    Article  CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Harun R, Jason WSY, Cherrington T, Danquah MK (2010) Microalgal biomass as a cellulosic fermentation feedstock for, bioethanol production. Renew Sust Energ Rev, In Press, Uncorrected Proof. doi:10.1016/j.rser.2010.07.071

  • Healey FP, Hendzel LL (1975) Effect of phosphorus deficiency on two algae growing in chemostats. J Phycol 11(3):303–309. doi:10.1111/j.1529-8817.1975.tb02784.x

    CAS  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102(1):186–193. doi:10.1016/j.biortech.2010.06.139

    Article  CAS  Google Scholar 

  • Leduy A, Therien N (1977) An improved method for optical density measurement of the semimicroscopic blue green alga Spirulina maxima. Biotechnol Bioeng 19(8):1219–1224. doi:10.1002/bit.260190812

    Article  Google Scholar 

  • Lodi A, Binaghi L, Solisio C, Converti A, Borghi M (2003) Nitrate and phosphate removal by Spirulina platensis. J Ind Microbiol Biotechnol 30(11):656–660. doi:10.1007/s10295-003-0094-5

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Luque I, Forchhammer K (2008) Nitrogen assimilation and C/N balance sensing. In: Herrero A, Flores E (eds) The cyanobacteria. Molecular biology, genetics and evolution. Caister Academic Press, Norfolk, pp 335–382

  • Morse GK, Brett SW, Guy JA, Lester JN (1998) Review: phosphorus removal and recovery technologies. Sci Total Environ 212(1):69–81. doi:10.1016/s0048-9697(97)00332-x

    Article  CAS  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56. doi:10.1016/j.jbiotec.2010.07.030

    Article  CAS  Google Scholar 

  • Ogbonda KH, Aminigo RE, Abu GO (2007) Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresour Technol 98(11):2207–2211. doi:10.1016/j.biortech.2006.08.028

    Article  CAS  Google Scholar 

  • Olguín EJ, Galicia S, Angulo-Guerrero O, Hernández E (2001) The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Bioresour Technol 77(1):19–24. doi:10.1016/s0960-8524(00)00142-5

    Article  Google Scholar 

  • Piorreck M, Baasch K-H, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23(2):207–216. doi:10.1016/s0031-9422(00)80304-0

    Article  CAS  Google Scholar 

  • Pouliot Y, Buelna G, Racine C, de la Noüe J (1989) Culture of cyanobacteria for tertiary wastewater treatment and biomass production. Biological Wastes 29(2):81–91. doi:10.1016/0269-7483(89)90089-x

    Article  CAS  Google Scholar 

  • Powell N, Shilton AN, Pratt S, Chisti Y (2008) Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol 42(16):5958–5962. doi:10.1021/es703118s

    Article  CAS  Google Scholar 

  • Powell N, Shilton A, Chisti Y, Pratt S (2009) Towards a luxury uptake process via microalgae—defining the polyphosphate dynamics. Water Res 43(17):4207–4213. doi:10.1016/j.watres.2009.06.011

    Article  CAS  Google Scholar 

  • Powell N, Shilton A, Pratt S, Chisti Y (2011) Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds. Water Sci Technol 63(4):704–709

    Article  CAS  Google Scholar 

  • Rangel-Yagui CdO, Danesi EDG, de Carvalho JCM, Sato S (2004) Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresour Technol 92(2):133–141. doi:10.1016/j.biortech.2003.09.00 2

    Google Scholar 

  • Rodrigues MS, Ferreira LS, Converti A, Sato S, Carvalho JCM (2010) Fed-batch cultivation of Arthrospira (Spirulina) platensis: potassium nitrate and ammonium chloride as simultaneous nitrogen sources. Bioresour Technol 101(12):4491–4498. doi:10.1016/j.biortech.2010.01.054

    Article  CAS  Google Scholar 

  • Rodrigues MS, Ferreira LS, Converti A, Sato S, de Carvalho JCM (2011) Influence of ammonium sulphate feeding time on fed-batch Arthrospira (Spirulina) platensis cultivation and biomass composition with and without pH control. Bioresour Technol 102(11):6587–6592. doi:10.1016/j.biortech.2011.03.088

    Article  CAS  Google Scholar 

  • Sassano CEN, Gioielli LA, Ferreira LS, Rodrigues MS, Sato S, Converti A, Carvalho JCM (2010) Evaluation of the composition of continuously-cultivated Arthrospira (Spirulina) platensis using ammonium chloride as nitrogen source. Biomass Bioenerg 34(12):1732–1738. doi:10.1016/j.biombioe.2010.07.002

    Article  CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416. doi:10.1016/j.biotechadv.2009.03.001

    Article  CAS  Google Scholar 

  • Tedesco M, Duerr E (1989) Light, temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina platensis UTEX 1928. J Appl Phycol 1(3):201–209. doi:10.1007/bf00003646

    Google Scholar 

  • Vonshak A (2002) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis, London

    Google Scholar 

  • Vonshak A, Tomaselli L (2000) Arthrospira (Spirulina): systematics and ecophysiology biochemistry. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, New York, pp 505–522

    Google Scholar 

  • Warr SRC, Reed RH, Stewart WDP (1985) Carbohydrate accumulation in osmotically stressed cyanobacteria (blue-green algae): interactions of temperature and salinity. New Phytol 100(3):285–292. doi:10.1111/j.1469-8137.1985.tb02779.x

    Article  CAS  Google Scholar 

  • Zöllner N, Kirsch K (1962) Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plasmalipoiden) gemeinsamen Sulfophosphovanillin-Reaktion. Res Exp Med (Berl) 135(6):545–561. doi:10.1007/bf02045455

    Google Scholar 

Download references

Acknowledgments

G. Markou thanks the Greek State Scholarship Foundation (IKY) for its economic support. The authors also thank Dr Spiros Valmis for his support in the provision of the materials used in the study and Dr Despo Kritsotaki and George Kyriakarakos for their help with English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgos Markou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markou, G., Chatzipavlidis, I. & Georgakakis, D. Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis . World J Microbiol Biotechnol 28, 2661–2670 (2012). https://doi.org/10.1007/s11274-012-1076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1076-4

Keywords

Navigation