Skip to main content
Log in

Production of a xylose-stimulated β-glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Humicola brevis var. thermoidea cultivated under solid state fermentation in wheat bran and water (1:2 w/v) was a good producer of β-glucosidase and xylanase. After optimization using response surface methodology the level of xylanase reached 5,791.2 ± 411.2 U g−1, while β-glucosidase production was increased about 2.6-fold, reaching 20.7 ± 1.5 U g−1. Cellulase levels were negligible. Biochemical characterization of H. brevis β-glucosidase and xylanase activities showed that they were stable in a wide pH range. Optimum pH for β-glucosidase and xylanase activities were 5.0 and 5.5, respectively, but the xylanase showed 80 % of maximal activity when assayed at pH 8.0. Both enzymes presented high thermal stability. The β-glucosidase maintained about 95 % of its activity after 26 h in water at 55 °C, with half-lives of 15.7 h at 60 °C and 5.1 h at 65 °C. The presence of xylose during heat treatment at 65 °C protected β-glucosidase against thermal inactivation. Xylanase maintained about 80 % of its activity after 200 h in water at 60 °C. Xylose stimulated β-glucosidase activity up to 1.7-fold, at 200 mmol L−1. The notable features of both xylanase and β-glucosidase suggest that H. brevis crude culture extract may be useful to compose efficient enzymatic cocktails for lignocellulosic materials treatment or paper pulp biobleaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adsul MG, Singhvi MS, Gaikaiwari SA, Gokhale DV (2011) Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour Technol 102:4304–4312. doi:10.1016/j.biortech.2011.01.002

    Article  CAS  Google Scholar 

  • Bajpai P (2004) Biological bleaching of chemical pulps. Crit Rev Biotechnol 24:1–58. doi:10.1080/07388550490465817

    Article  CAS  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidase: cloning, properties and applications. Crit Rev Biotechnol 22:375–407. doi:10.1080/07388550290789568

    Article  CAS  Google Scholar 

  • Bohlin C, Olsen SN, Morant MD, Patkar S, Borch K, Westh P (2010) A comparative study of activity and apparent inhibition of fungal β-glucosidases. Biotechnol Bioeng 107:943–952. doi:10.1002/bit.22885

    Article  CAS  Google Scholar 

  • Camassola M, Dillon AJP (2007) Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. J Appl Microbiol 103:2196–2204. doi:10.1111/j.1365-2672.2007.03458.x

    Article  CAS  Google Scholar 

  • Christopher L, Bissoon S, Singh S, Szendefy J, Szakacs G (2005) Bleach-enhancing abilities of Thermomyces lanuginosus xylanases produced by solid state fermentation. Process Biochem 40:3230–3235. doi:10.1016/j.procbio.2005.03.027

    Article  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23. doi:10.1016/j.femsre.2004.06.005

    Article  CAS  Google Scholar 

  • Da Silva R, Lago ES, Merheb CW, Macchione MM, Park YK, Gomes E (2005) Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiacus Miehe. Braz J Microbiol 36:235–241. doi:10.1590/S1517-83822005000300006

    Google Scholar 

  • Damaso MCT, Andrade CMMC, Pereira P (2000) Use of corncob for endoxylanase production by thermophilic fungus Thermomyces lanuginosus IOC-4145. Appl Biochem Biotechnol 84–86:821–834. doi:10.1385/ABAB:84-86:1-9:821

    Article  Google Scholar 

  • Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072. doi:10.1016/j.biortech.2011.03.032

    Article  CAS  Google Scholar 

  • Dhillon GS, Oberoi HS, Kaur S, Bansal S, Brar SK (2011) Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind Crops Prod 34:1160–1167. doi:10.1016/j.indcrop.2011.04.001

    Article  CAS  Google Scholar 

  • Fang TJ, Liao BC, Lee SC (2010) Enhanced production of xylanase by Aspergillus carneus M34 in solid-state fermentation with agricultural waste using statistical approach. New Biotechnol 27:25–32. doi:10.1016/j.nbt.2009.09.008

    Article  CAS  Google Scholar 

  • Filho EXF (1996) Purification and characterization of a β-glucosidase from solid-state cultures of Humicola grisea var. thermoidea. Can J Microbiol 42:1–5. doi:10.1139/m96-001

    Article  Google Scholar 

  • Gaffney M, Doyle S, Murphy R (2009) Optimization of xylanase production by Thermomyces lanuginosus in solid state fermentation. Biosci Biotechnol Biochem 73:2640–2644. doi:10.1271/bbb.90493

    Article  CAS  Google Scholar 

  • Gao J, Weng H, Xi Y, Zhu D, Han S (2008) Purification and characterization of a novel endo-β-1,4-glucanase from the thermoacidophilic Aspergillus terreus. Biotechnol Lett 30:323–327. doi:10.1007/s10529-007-9536-x

    Article  CAS  Google Scholar 

  • Garg G, Mahajan R, Kaur A, Sharma J (2011) Xylanase production using agro-residue in solid-state fermentation from Bacillus pumilus ASH for biodelignification of wheat straw pulp. Biodegradation 22:1143–1154. doi:10.1007/s10532-011-9470-4

    Article  CAS  Google Scholar 

  • Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Zupancic S (1996) Production of fungal xylanases. Bioresour Technol 58:137–161. doi:10.1016/S0960-8524(96)00094-6

    Article  CAS  Google Scholar 

  • Harris D, Debolt S (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol J 8:244–262. doi:10.1111/j.1467-7652.2009.00481.x

    Article  CAS  Google Scholar 

  • Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186. doi:10.1007/s00253-003-1504-3

    Article  Google Scholar 

  • Jahromi MF, Liang JB, Rosfarizan M, Goh YM, Shokryazdan P, Ho YW (2011) Efficiency of rice straw lignocelluloses degradability by Aspergillus terreus ATCC 74135 in solid state fermentation. Afr J Biotechnol 10:4428–4435

    CAS  Google Scholar 

  • Jatinder K, Chadha BS, Saini HS (2006a) Optimization of medium components for production of cellulases by Melanocarpus sp. MTCC 3922 under solid-state fermentation. World J Microbiol Biotechnol 22:15–22. doi:10.1007/s11274-005-2821-8

    Article  CAS  Google Scholar 

  • Jatinder K, Chadha BS, Saini HS (2006b) Regulation of cellulase production in two thermophilic fungi Melanocarpus sp. MTCC 3922 and Scytalidium thermophilum MTCC 4520. Enzyme Microb Technol 38:931–936. doi:10.1016/J.ENZMICTEC.2005.08.036

    Article  Google Scholar 

  • Jatinder K, Chadha BS, Saini HS (2006c) Optimization of culture conditions for production of cellulases and xylanases by Scytalidium thermophilum using response surface methodology. World J Microbiol Biotechnol 22:169–176. doi:10.1007/s11274-005-9015-2

    Article  CAS  Google Scholar 

  • Jiang Z, Cong Q, Yan Q, Kumar N, Dub X (2010) Characterisation of a thermostable xylanase from Chaetomium sp. and its application in chinese steamed bread. Food Chem 120:457–462. doi:10.1016/j.foodchem.2009.10.038

    Article  CAS  Google Scholar 

  • Joshi C, Khare SK (2011) Utilization of deoiled Jatropha curcas seed cake for production of xylanase from thermophilic Scytalidium thermophilum. Bioresour Technol 102:1722–1726. doi:10.1016/j.biortech.2010.08.070

    Article  CAS  Google Scholar 

  • Kalogeris E, Christakopoulos P, Kekos D, Macris BJ (1998) Studies on the solid-state production of thermostable endoxylanases from Thermoascus aurantiacus: characterization of two isozymes. J Biotechnol 60:155–163. doi:10.1016/S0168-1656(97)00186-7

    Article  CAS  Google Scholar 

  • Kamra P, Satyanarayana T (2004) Xylanase production by the thermophilic mold Humicola lanuginosa in solid-state fermentation. Appl Biochem Biotechnol 119:145–157. doi:10.1385/ABAB:119:2:145

    Article  CAS  Google Scholar 

  • Khucharoenphaisan K, Tokuyama S, Kitpreechavanich V (2010) Purification and characterization of a high-thermostable b-xylanase from newly isolated Thermomyces lanuginosusTHKU-49. Mycoscience 51:405–410. doi:10.1007/s10267-010-0054-7

    Article  CAS  Google Scholar 

  • Knob A, Terrasan CRF, Carmona EC (2010) β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407. doi:10.1007/s11274-009-0190-4

    Article  CAS  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391. doi:10.1007/s10295-008-0327-8

    Article  CAS  Google Scholar 

  • Leite RSR, Gomes E, da Silva R (2007) Characterization and comparison of termostability of purified β-glucosidases from a mesophilic Aureobasidium pullulans and a thermophilic Thermoacus aurantiacus. Process Biochem 42:1101–1106. doi:10.1016/j.procbio.2007.05.003

    Article  CAS  Google Scholar 

  • Leite RSR, Alves-Prado HF, Cabral H, Pagnocca FC, Gomes E, Da Silva R (2008) Production and characteristics comparison of crude β-glucosidases produced by microorganisms Thermoascus aurantiacus e Aureobasidium pullulans in agricultural wastes. Enzyme Microb Technol 43:391–395. doi:10.1016/j.enzmictec.2008.07.006

    Article  CAS  Google Scholar 

  • Lucena-Neto SA, Filho EXF (2004) Purification and characterization of a new xylanase from Humicola grisea var. thermoidea. Braz J Microbiol 35:86–90. doi:10.1590/S1517-83822004000100014

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. doi:10.1128/MMBR.66.3.506-577.2002

    Article  CAS  Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488. doi:10.1128/MMBR.64.3.461-488.2000

    Article  CAS  Google Scholar 

  • McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428. doi:10.1021/ac60147a030

    Article  CAS  Google Scholar 

  • Narang S, Sahai V, Bisaria VS (2001) Optimization of xylanase production by Melanocarpus albomyces IIS68 in solid state fermentation using response surface methodology. J Biosci Bioeng 91:425–427. doi:10.1016/S1389-1723(01)80164-X

    CAS  Google Scholar 

  • Nascimento CV, Souza FHM, Masui DC, Leone FA, Peralta RM, Jorge JA, Furriel RPM (2010) Purification and biochemical properties of a glucose-stimulated β-d-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse. J Microbiol 48:53–62. doi:10.1007/s12275-009-0159-x

    Article  CAS  Google Scholar 

  • Peralta RM, Terenzi HF, Jorge JA (1990) β-D-Glycosidase activities of Humicola grisea: biochemical and kinetic characterization of a multifunctional enzyme. Biochim Biophys Acta 1033:243–249. doi:10.1016/0304-4165(90)90127-I

    Article  CAS  Google Scholar 

  • Peralta RM, Kadowaki MK, Terenzi HF, Jorge JA (1997) A highly thermostable β-glucosidase activity from the thermophilic fungus Humicola grisea var. thermoidea: purification and biochemical characterization. FEMS Microbiol Lett 146:291–295. doi:10.1111/j.1574-6968.1997.tb10207.x

    Article  CAS  Google Scholar 

  • Qing Q, Wyman CE (2011) Hydrolysis of different chain length xylooliogmers by cellulase and hemicellulase. Bioresour Technol 102:1359–1366. doi:10.1016/j.biortech.2010.09.001

    Article  CAS  Google Scholar 

  • Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630. doi:10.1016/j.biortech.2010.06.137

    Article  CAS  Google Scholar 

  • Rajoka MI, Akhtar MW, Hanif A, Khalid AL (2006) Production and characterization of a highly active cellobiase from Aspergillus niger grown in solid state fermentation. World J Microbiol Biotechnol 22:991–998. doi:10.1007/s11274-006-9146-0

    Article  CAS  Google Scholar 

  • Read SM, Northcote DH (1981) Minimization of variation in the response to different protein of the Coomassie blue G dye-binding assay for protein. Anal Biochem 116:53–64. doi:10.1016/0003-2697(81)90321-3

    Article  CAS  Google Scholar 

  • Riou C, Salmon JM, Vallier MJ, Gunata Z, Barre P (1998) Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 64:3607–3614

    CAS  Google Scholar 

  • Romdhane IBB, Maaleja-Chouri I, Belghith H (2010) Improvement of highly thermostable xylanases production by Talaromyces thermophilus for the agro-industrials residue hydrolysis. Appl Biochem Biotechnol 162:1635–1646. doi:10.1007/s12010-010-8945-9

    Article  Google Scholar 

  • Sharma M, Soni R, Nazir A, Oberoi HS, Chadha BS (2011) Evaluation of glycosyl hydrolases in the secretome of Aspergillus fumigatus and saccharification of alkali-treated rice straw. Appl Biochem Biotechnol 163:577–591. doi:10.1007/s12010-010-9064-3

    Article  CAS  Google Scholar 

  • Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27:3–16. doi:10.1016/S0168-6445(03)00018-4

    Article  CAS  Google Scholar 

  • Singh S, Tyagi CH, Dutt D, Upadhyaya JS (2009) Production of high level of cellulase-poor xylanases by wild strains of white-rot fungus Coprinellus disseminatus in solid-state fermentation. New Biotechnol 26:165–170. doi:10.1016/j.nbt.2009.09.004

    Article  CAS  Google Scholar 

  • Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 46:541–549. doi:10.1016/S0168-6445(03)00018-4

    Article  CAS  Google Scholar 

  • Soni R, Nazir A, Chadha BS, Saini HS (2008) Novel sources of fungal cellulases for efficient deinking of composite paper waste. Bioresources 3:234–246

    Google Scholar 

  • Soni R, Nazir A, Chadha BS (2010a) Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. Ind Crops Prod 31:277–283. doi:10.1016/j.indcrop.2009.11.007

    Article  CAS  Google Scholar 

  • Soni SK, Batra N, Bansal N, Soni R (2010b) Bioconversion of sugarcane bagasse into second generation bioethanol after enzymatic hydrolysis with in-house produced cellulases from Aspergillus sp. S4B2F. Bioresources 5:741–758

    CAS  Google Scholar 

  • Sonia KG, Chadha BS, Badhan AK, Saini HS, Bhat MK (2008) Identification of glucose tolerant acid active β-glucosidases from thermophilic and thermotolerant fungi. World J Microbiol Biotechnol 24:599–604. doi:10.1007/s11274-007-9512-6

    Article  CAS  Google Scholar 

  • Souza FHM, Nascimento CV, Rosa JC, Masui DC, Leone FA, Jorge JA, Furriel RPM (2010) Purification and biochemical characterization of a mycelial glucose- and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens. Process Biochem 45:272–278. doi:10.1016/j.procbio.2009.09.018

    Article  CAS  Google Scholar 

  • Takó M, Tóth A, Nagy LG, Krisch J, Vágvolgyi C, Papp T (2010) A new β-glucosidase gene from the zygomycete fungus Rhizomucor miehei. Antonie Van Leeuwenhoek 97:1–10. doi:10.1007/s10482-009-9382-z

    Article  Google Scholar 

  • Techapun C, Poosaran N, Watanabe M, Sasaki K (2003) Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: a review. Process Biochem 38:1327–1340. doi:10.1016/S0032-9592(02)00331-X

    Article  CAS  Google Scholar 

  • Uchima CA, Tokuda G, Watanabe H, Kitamoto K, Arioka M (2011) Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Appl Microbiol Biotechnol 89:1761–1771. doi:10.1007/s00253-010-2963-y

    Article  CAS  Google Scholar 

  • Vafiadi C, Christakopoulos P, Topakas E (2010) Purification, characterization and mass spectrometric identification of two thermophilic xylanases from Sporotrichum thermophile. Process Biochem 45:419–424. doi:10.1016/j.procbio.2009.10.009

    Article  CAS  Google Scholar 

  • Xu H, Xiong AS, Zhao W, Tian YS, Peng RH, Chen JM, Yao QH (2011) Characterization of a glucose-, xylose-, sucrose-, and d-galactose-stimulated β-glucosidase from the alkalophilic bacterium Bacillus halodurans C-125. Curr Microbiol 62:833–839. doi:10.1007/s00284-010-9766-3

    Article  CAS  Google Scholar 

  • Yang S, Jiang Z, Yan Q, Zhu H (2008) Characterization of a thermostable extracellular β-glucosidase with activities of exoglucanase and transglycosylation from Paecilomyces thermophila. J Agric Food Chem 56:602–608. doi:10.1021/jf072279+

    Article  CAS  Google Scholar 

  • Zanoelo FF, Polizeli MLTM, Terenzi HF, Jorge JA (2004) β-Glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiol Lett 240:137–143. doi:10.1016/j.femsle.2004.09.021

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported by research grants from the Conselho de Desenvolvimento Científico e Tecnológico (CNPq), the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). DCM received a post-doctoral scholarship from CNPq. FHMS received a PhD. scholarship from FAPESP, and ALRLZ a doctoral scholarship from CAPES and FAPESP. LHSG, RPMF and JAJ received a research scholarship from CNPq. We thank Nilton Rosa Alves and Mauricio de Oliveira for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Chodi Masui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masui, D.C., Zimbardi, A.L.R.L., Souza, F.H.M. et al. Production of a xylose-stimulated β-glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation. World J Microbiol Biotechnol 28, 2689–2701 (2012). https://doi.org/10.1007/s11274-012-1079-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1079-1

Keywords

Navigation