Skip to main content

Advertisement

Log in

Comparison of ITS and 18S rDNA for estimating fungal diversity using PCR–DGGE

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Both the internal transcribed spacer (ITS) region and 18S rRNA genes are broadly applied in molecular fingerprinting studies of fungi. However, the differences in those two ribosomal RNA regions are still largely unknown. In the current study, three sets of most suitable subunit ribosomes in ITS and 18S rRNA were compared using denaturing gradient gel electrophoresis (DGGE) under the optimum experimental conditions. Ten samples from both aquatic and soil environments were tested. The results revealed that the ITS region produced range-weighted richness in the range 36–361, which was significantly higher than that produced by 18S rDNA. There was a similar tendency in terms of the Shannon–Weaver diversity index and community dynamics in both water and soil samples. Samples from water and soil were better separated using ITS than 18S rDNA in principal component analysis of DGGE bands. Our study suggests that the ITS region is more precise and has more potential than 18S rRNA genes in fungal community analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson IC, Parkin PI (2007) Detection of active soil fungi by RT-PCR amplification of precursor rRNA molecules. J Microbiol Methods 68:248–253

    Article  CAS  Google Scholar 

  • Anderson IC, Campbell CD, Prosser JI (2003a) Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ Microbiol 5:36–47

    Article  CAS  Google Scholar 

  • Anderson IC, Campbell CD, Prosser JI (2003b) Diversity of fungi in organic soils under a moorland: scots pine (Pinus sylvestris L.) gradient. Environ Microbiol 5:1121–1132

    Article  Google Scholar 

  • Boon N, De Windt W, Verstraete W, Top E (2002) Evaluation of nested PCR–DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol Ecol 39:101–112

    CAS  Google Scholar 

  • Bougoure DS, Cairney JWG (2005) Assemblages of ericoid mycorrhizal and other root-associated fungi from Epacris pulchella (Ericaceae) as determined by culturing and direct DNA extraction from roots. Environ Microbiol 7:819–827

    Article  CAS  Google Scholar 

  • Burke DJ, Martin KJ, Rygiewicz PT, Topa MA (2005) Ectomycorrhizal fungi identification in single and pooled root samples: terminal restriction fragment length polymorphism (TRFLP) and morphotyping compared. Soil Biol Biochem 37:1683–1694

    Article  CAS  Google Scholar 

  • Curlevski NJA, Xu ZH, Anderson IC, Cairney JWG (2010) Diversity of soil and rhizosphere fungi under Araucaria bidwillii (Bunya pine) at an Australian tropical montane rainforest site. Fungal Divers 40:12–22

    Article  Google Scholar 

  • Dal Grande F, Beck A, Cornejo C, Singh G, Cheenacharoen S, Nelsen MP, Scheidegger C (2014) Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis s.l. (Trebouxiophyceae): a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae. New Phytol 202:455–470

    Article  CAS  Google Scholar 

  • De Souza FA, Kowalchuk GA, Leeflang P, van Veen JA, Smit E (2004) PCR-denaturing gradient gel electrophoresis profiling of inter- and intraspecies 18S rRNA gene sequence heterogeneity is an accurate and sensitive method to assess species diversity of arbuscular mycorrhizal fungi of the genus Gigaspora. Appl Environ Microbiol 70:1413–1424

    Article  Google Scholar 

  • Doare-Lebrun E, El Arbi A, Charlet M, Guerin L, Pernelle JJ, Ogier JC, Bouix M (2006) Analysis of fungal diversity of grapes by application of temporal temperature gradient gel electrophoresis: potentialities and limits of the method. J Appl Microbiol 101:1340–1350

    Article  CAS  Google Scholar 

  • Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA gene phylogenies reveal uncharacterized fungal phylotypes. Fungal Divers 23:121–138

    Google Scholar 

  • Evans TN, Watson G, Rees GN, Seviour RJ (2014) Comparing activated sludge fungal community population diversity using denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism. Antonie Van Leeuwenhoek Int J General Mol Microbiol 105:559–569

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hattenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380

    Article  Google Scholar 

  • Green SJ, Freeman S, Hadar Y, Minz D (2004) Molecular tools for isolate and community studies of Pyrenomycete fungi. Mycologia 96:439–451

    Article  CAS  Google Scholar 

  • Hammes F, Goldschmidt F, Vital M, Wang YY, Egli T (2010) Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments. Water Res 44:3915–3923

    Article  CAS  Google Scholar 

  • Hoshino YT, Morimoto S (2008) Comparison of 18S rDNA primers for estimating fungal diversity in agricultural soils using polymerase chain reaction-denaturing gradient gel electrophoresis. Soil Sci Plant Nutr 54:701–710

    Article  CAS  Google Scholar 

  • Hoshino YT, Morimoto S (2010) Soil clone library analyses to evaluate specificity and selectivity of PCR primers targeting fungal 18S rDNA for denaturing-gradient gel electrophoresis (DGGE). Microbes Environ 25:281–287

    Article  Google Scholar 

  • Hunt J, Boddy L, Randerson PF, Rogers HJ (2004) An evaluation of 18S rDNA approaches for the study of fungal diversity in grassland soils. Microbial Ecol 47:385–395

    Article  CAS  Google Scholar 

  • Kittelmann S, Naylor GE, Koolaard JP, Janssen PH (2012) A proposed taxonomy of anaerobic fungi (class neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. PLoS One 7:e36866

    Article  CAS  Google Scholar 

  • Ko TWK, Stephenson SL, Bahkali AH, Hyde KD (2011) From morphology to molecular biology: can we use sequence data to identify fungal endophytes? Fungal Divers 50:113–120

    Article  Google Scholar 

  • Krauss G-J, Sole M, Krauss G, Schlosser D, Wesenberg D, Baerlocher F (2011) Fungi in freshwaters: ecology, physiology and biochemical potential. FEMS Microbiol Rev 35:620–651

    Article  CAS  Google Scholar 

  • Krueger D, Kapturska D, Fischer C, Daniel R, Wubet T (2012) Diversity measures in environmental sequences are highly dependent on alignment quality—data from ITS and new LSU primers targeting basidiomycetes. PLoS One 7:e32139

    Article  CAS  Google Scholar 

  • Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1:756–762

    Article  CAS  Google Scholar 

  • Landeweert R, Leeflang P, Kuyper TW, Hoffland E, Rosling A, Wernars K, Smit E (2003) Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl Environ Microbiol 69:327–333

    Article  CAS  Google Scholar 

  • Liu K-L, Porras-Alfaro A, Kuske CR, Eichorst SA, Xie G (2012) Accurate, rapid taxonomic classification of fungal large-subunit rRNA genes. Appl Environ Microbiol 78:1523–1533

    Article  CAS  Google Scholar 

  • Liu J, Wang J, Gao G, Bartlam GM, Wang Y (2015) Distribution and diversity of fungi in freshwater sediments on a river catchment scale. Front Microbiol 6:329

    Google Scholar 

  • Lord NS, Kaplan CW, Shank P, Kitts CL, Elrod SL (2002) Assessment of fungal diversity using terminal restriction fragment (TRF) pattern analysis: comparison of 18S and ITS ribosomal regions. FEMS Microbiol Ecol 42:327–337

    Article  CAS  Google Scholar 

  • Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    Article  CAS  Google Scholar 

  • Mello A, Napoli C, Murat C, Morin E, Marceddu G, Bonfante P (2011) ITS-1 versus ITS-2 pyrosequencing: a comparison of fungal populations in truffle grounds. Mycologia 103:1184–1193

    Article  CAS  Google Scholar 

  • Monchy S, Sanciu G, Jobard M, Rasconi S, Gerphagnon M, Chabe M, Cian A, Meloni D, Niquil N, Christaki U, Viscogliosi E, Sime-Ngando T (2011) Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ Microbiol 13:1433–1453

    Article  Google Scholar 

  • Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322

    Article  CAS  Google Scholar 

  • Pant D, Adholeya A (2007a) Enhanced production of ligninolytic enzymes and decolorization of molasses distillery wastewater by fungi under solid state fermentation. Biodegradation 18:647–659

    Article  CAS  Google Scholar 

  • Pant D, Adholeya A (2007b) Identification, ligninolytic enzyme activity and decolorization potential of two fungi isolated from a distillery effluent contaminated site. Water Air Soil Pollut 183:165–176

    Article  CAS  Google Scholar 

  • Pant D, Adholeya A (2010) Development of a novel fungal consortium for the treatment of molasses distillery wastewater. Environmentalist 30:178–182

    Article  Google Scholar 

  • Pereira VJ, Fernandes D, Carvalho G, Benoliel MJ, San Romao MV, Barreto Crespo MT (2010) Assessment of the presence and dynamics of fungi in drinking water sources using cultural and molecular methods. Water Res 44:4850–4859

    Article  CAS  Google Scholar 

  • Rao S, Hyde KD, Pointing SB (2013) Comparison of DNA and RNA, and cultivation approaches for the recovery of terrestrial and aquatic fungi from environmental samples. Curr Microbiol 66:185–191

    Article  CAS  Google Scholar 

  • Reblova M, Untereiner WA, Reblova K (2013) Novel evolutionary lineages revealed in the Chaetothyriales (fungi) based on multigene phylogenetic analyses and comparison of ITS secondary structure. PLoS One 8:e63547

    Article  CAS  Google Scholar 

  • Roose-Amsaleg C, Brygoo Y, Harry M (2004) Ascomycete diversity in soil-feeding termite nests and soils from a tropical rainforest. Environ Microbiol 6:462–469

    Article  CAS  Google Scholar 

  • Shirouzu T, Hirose D, Oberwinkler F, Shimomura N, Maekawa N, Tokumasu S (2013) Combined molecular and morphological data for improving phylogenetic hypothesis in Dacrymycetes. Mycologia 105:1110–1125

    Article  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2012) Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World J Microbiol Biotechnol 28:659–667

    Article  CAS  Google Scholar 

  • Smit E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621

    CAS  Google Scholar 

  • Sugiyama A, Vivanco JM, Jayanty SS, Manter DK (2010) Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms. Plant Dis 94:1329–1335

    Article  CAS  Google Scholar 

  • Sun X, Zhou Q, Wang Y, Ren W (2013) Influence of hydro-geomorphology, land-use and riparian zone characteristics on herbicide occurrence and distribution in sediments in Songhua River Basin, northeastern China. Geoderma 193:156–164

    Article  Google Scholar 

  • Tejesvi MV, Ruotsalainen AL, Markkola AM, Pirttila AM (2010) Root endophytes along a primary succession gradient in northern Finland. Fungal Divers 41:125–134

    Article  Google Scholar 

  • Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of Ascomycetes and Basidiomycetes in environmental samples. PLoS One 7:e40863

    Article  CAS  Google Scholar 

  • Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936

    Article  CAS  Google Scholar 

  • Wang JJ, Yang L, Qiu X, Liu YG, Zhou W, Wan YJ (2013) Diversity analysis of Beauveria bassiana isolated from infected silkworm in southwest China based on molecular data and morphological features of colony. World J Microbiol Biotechnol 29:1263–1269

    Article  CAS  Google Scholar 

  • Weber SD, Hofmann A, Pilhofer M, Wanner G, Agerer R, Ludwig W, Schleifer K-H, Fried J (2009) The diversity of fungi in aerobic sewage granules assessed by 18S rRNA gene and ITS sequence analyses. FEMS Microbiol Ecol 68:246–254

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support from Chinese National Science Foundation (31270545) and Tianjin Research Program for Advanced Technology (12JCZDJC29700).

Conflict of interest

The authors declare that they have no conflict of interest and the research does not involve Human Participants and/or Animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yu, Y., Cai, Z. et al. Comparison of ITS and 18S rDNA for estimating fungal diversity using PCR–DGGE. World J Microbiol Biotechnol 31, 1387–1395 (2015). https://doi.org/10.1007/s11274-015-1890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1890-6

Keywords

Navigation