Skip to main content
Log in

The promiscuity of Phaseolus vulgaris L. (common bean) for nodulation with rhizobia: a review

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Phaseolus vulgaris L. (common bean) is a legume indigenous to American countries currently cultivated in all continents, which is nodulated by different rhizobial species and symbiovars. Most of species able to nodulate this legume worldwide belong to the genus Rhizobium, followed by those belonging to the genera Ensifer (formerly Sinorhizobium) and Pararhizobium (formerly Rhizobium) and minority by species of the genus Bradyrhizobium. All these genera belong to the phylum alpha-Proteobacteria, but the nodulation of P. vulgaris has also been reported for some species belonging to Paraburkholderia and Cupriavidus from the beta-Proteobacteria. Several species nodulating P. vulgaris were originally isolated from nodules of this legume in American countries and are linked to the symbiovars phaseoli and tropici, which are currently present in other continents probably because they were spread in their soils together with the P. vulgaris seeds. In addition, this legume can be nodulated by species and symbiovars originally isolated from nodules of other legumes due its high promiscuity, a concept currently related with the ability of a legume to be nodulated by several symbiovars rather than by several species. In this article we review the species and symbiovars able to nodulate P. vulgaris in different countries and continents and the challenges on the study of the P. vulgaris endosymbionts diversity in those countries where they have not been studied yet, that will allow to select highly effective rhizobial strains in order to guarantee the success of P. vulgaris inoculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abiala MA, Abdelrahman M, Burritt DJ, Tran LSP (2018) Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt-degraded soils. Land Degrad Dev 29:3812–3822

    Article  Google Scholar 

  • Adhikari D, Itoh K, Suyama K (2013) Genetic diversity of common bean (Phaseolus vulgaris L.) nodulating rhizobia in Nepal. Plant Soil 368:341–353

    Article  CAS  Google Scholar 

  • Aguilar OM, Lopez MV, Riccillo PM (2001) The diversity of rhizobia nodulating beans in Northwest Argentina as a source of more efficient inoculant strains. J Biotechnol 91:181–188

    Article  CAS  PubMed  Google Scholar 

  • Aguilar OM, Riva O, Peltzer E (2004) Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc Natl Acad Sci USA 101:13548–13553

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Martínez ER, Valverde A, Ramírez-Bahena MH, García-Fraile P, Tejedor C, Mateos PF, Santillana N, Zúñiga D, Peix A, Velázquez E (2009) The analysis of core and symbiotic genes of rhizobia nodulating Vicia from different continents reveals their common phylogenetic origin and suggests the distribution of Rhizobium leguminosarum strains together with Vicia seeds. Arch Microbiol 191:659–668

    Article  PubMed  CAS  Google Scholar 

  • Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006

    Article  CAS  PubMed  Google Scholar 

  • Andrews M, De Meyer S, James EK, Stępkowski T, Hodge S, Simon MF, Young JPW (2018) Horizontal transfer of symbiosis genes within and between rhizobial genera: occurrence and importance. Genes (Basel). https://doi.org/10.3390/genes9070321

    Article  Google Scholar 

  • Angioi SA, Rau D, Attene G, Nanni L, Bellucci E, Logozzo G, Negri V, Zeuli PLS, Papa R (2010) Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theor Appl Genet 121:829–843

    Article  CAS  PubMed  Google Scholar 

  • Aserse AA, Räsänen LA, Assefa F, Hailemariam A, Lindström K (2012) Phylogeny and genetic diversity of native rhizobia nodulating common bean (Phaseolus vulgaris L.) in Ethiopia. Syst Appl Microbiol 35:120–131

    Article  PubMed  Google Scholar 

  • Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K (2017) Draft genome sequence of type strain HBR26T and description of Rhizobium aethiopicum sp. nov. Stand Genomic Sci 12:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aserse AA, Markos D, Getachew G, Yli-Halla M, Lindström K (2020) Rhizobial inoculation improves drought tolerance, biomass and grain yields of common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.) at Halaba and Boricha in Southern Ethiopia. Arch Agron Soil Sci 66:488–501

    Article  CAS  Google Scholar 

  • Baginsky C, Brito B, Scherson R, Pertuzé R, Seguel O, Cañete A, Araneda C, Johnson WE (2015) Genetic diversity of Rhizobium from nodulating beans grown in a variety of Mediterranean climate soils of Chile. Arch Microbiol 197:419–429

    Article  CAS  PubMed  Google Scholar 

  • Barraza A, Coss-Navarrete EL, Vizuet-de-Rueda JC, Martínez-Aguilar K, Hernández-Chávez JL, Ordaz-Ortiz JJ, Winkler R, Tiessen A, Alvarez-Venegas R (2018) Down-regulation of PvTRX1h increases nodule number and affects auxin, starch, and metabolic fingerprints in the common bean (Phaseolus vulgaris L.). Plant Sci 274:45–58

    Article  CAS  PubMed  Google Scholar 

  • Beyene D, Kassa S, Ampy F, Asseffa A, Gebremedhin T, Berkum PV (2004) Ethiopian soils harbor natural populations of rhizobia that form symbioses with common bean (Phaseolus vulgaris L.). Arch Microbiol 181:129–136

    Article  CAS  PubMed  Google Scholar 

  • Bouhmouch I, Brhada F, Filali-Maltouf A, Aurag J (2001) Selection of osmotolerant and effective strains of Rhizobiaceae for inoculation of common bean (Phaseolus vulgaris) in Moroccan saline soils. Agronomie 21:591–599

    Article  Google Scholar 

  • Bruning B, Rozema J (2013) Symbiotic nitrogen fixation in legumes: perspectives for saline agriculture. Environ Exp Bot 92:134–143

    Article  CAS  Google Scholar 

  • Buruchara R, Chirwa R, Sperling L, Mukankusi C, Rubyogo JC, Mutonhi R, Abang MM (2011) Development and delivery of bean varieties in Africa: the Pan-Africa Bean Research Alliance (PABRA) model. African Crop Sci J 19:227–245

    Google Scholar 

  • Butcher K, Wick AF, De Sutter T, Chatterjee A, Harmon J (2016) Soil salinity: a threat to global food security. Agron J 108:2189–2200

    Article  CAS  Google Scholar 

  • Cao Y, Wang ET, Zhao L, Chen WM, Wei GH (2014) Diversity and distribution of rhizobia nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biol Biochem 78:128–137

    Article  CAS  Google Scholar 

  • Carrasco-Castilla J, Ortega-Ortega Y, Jáuregui-Zúñiga D, Juárez-Verdayes MA, Arthikala MK, Monroy-Morales E, Nava N, Santana O, Sánchez-López R, Quinto C (2018) Down-regulation of a Phaseolus vulgaris annexin impairs rhizobial infection and nodulation. Environ Exp Bot 153:108–119

    Article  CAS  Google Scholar 

  • Cordeiro AB, Ribeiro RA, Helene LCF, Hungria M (2017) Rhizobium esperanzae sp. nov., a N2-fixing root symbiont of Phaseolus vulgaris from Mexican soils. Int J Syst Evol Microbiol 67:3937–3945

    Article  CAS  PubMed  Google Scholar 

  • Costa MR, Chibeba AM, Mercante FM, Hungría M (2018) Polyphasic characterization of rhizobia microsymbionts of common bean [Phaseolus vulgaris (L.)] isolated in Mato Grosso do Sul, a hotspot of Brazilian biodiversity. Symbiosis 76:163–176

    Article  CAS  Google Scholar 

  • Dall'Agnol RF, Ribeiro RA, Ormeno-Orrillo E, Rogel MA, Delamuta JRM, Andrade DS, Martínez-Romero E, Hungria M (2013) Rhizobium freirei sp. nov.: a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 63:4167–4173

    Article  CAS  PubMed  Google Scholar 

  • Dall'Agnol RF, Ribeiro RA, Delamuta JRM, Ormeno-Orrillo E, Rogel MA, Andrade DS, Martinez-Romero E, Hungria M (2014) Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. Int J Syst Evol Microbiol 64:3222–3229

    Article  PubMed  Google Scholar 

  • Dall'Agnol RF, Bournaud C, de Faria SM, Béna G, Moulin L, Hungria M (2017) Genetic diversity of symbiotic Paraburkholderia species isolated from nodules of Mimosa pudica (L.) and Phaseolus vulgaris (L.) grown in soils of the Brazilian Atlantic Forest (Mata Atlântica). FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fix027

    Article  PubMed  Google Scholar 

  • Dangeard PA (1926) Recherches sur les tubercles radicaux des Légumineuses. Botaniste 16:1–275

    Google Scholar 

  • da Silva K, Florentino LA, da Silva KB, de Brandt E, Vandamme P, de Souza Moreire FM (2012) Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst Appl Microbiol 35:175–182

    Article  PubMed  CAS  Google Scholar 

  • de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins MD, Kersters K, Dreyfus B, Gillis M (1998) Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290

    Article  PubMed  Google Scholar 

  • De Ron A, Papa R, Bitocchi E, González AM, Debouck DG, Brick MA, Fourie D, Marsolais F, Beaver J, Geffroy V, McClean P, Santalla M, Lozano R, Yuste-Lisbona FJ, Casquero PA (2015) Common bean. In: De Ron A (ed) Grain legumes. Handbook of plant breeding. Springer, New York, NY10

    Google Scholar 

  • del Cerro P, Ayala-García P, Jiménez-Guerrero I, López-Baena FJ, Vinardell JM, Megías M, Hungria M, Gil-Serrano AM, Pérez-Montaño F, Ollero FJ (2019) The non-flavonoid inducible nodA3 and the flavonoid regulated nodA1 genes of Rhizobium tropici CIAT 899 guarantee nod factor production and nodulation of different host legumes. Plant Soil 440:185–200

    Article  CAS  Google Scholar 

  • Díaz-Alcántara CA, Ramírez-Bahena MH, Mulas D, García-Fraile P, Gómez-Moriano A, Peix A, Velázquez E, González-Andrés F (2014) Analysis of rhizobial strains nodulating Phaseolus vulgaris from Hispaniola Island, a geographic bridge between Meso and South America and the first historical link with Europe. Syst Appl Microbiol 37:149–156

    Article  PubMed  Google Scholar 

  • Diouf A, de Lajudie P, Neyra M, Kersters K, Gillis M, Martinez-Romero E, Gueye M (2000) Polyphasic characterization of rhizobia that nodulate Phaseolus vulgaris in West Africa (Senegal and Gambia). Int J Syst Evol Microbiol 50:159–170

    Article  CAS  PubMed  Google Scholar 

  • Elbanna K, Elbadry M, Gamal-Eldin H (2009) Genotypic and phenotypic characterization of rhizobia that nodulates snap bean (Phaseolus vulgaris L.) in Egyptian soils. Syst Appl Microbiol 32:522–530

    Article  CAS  PubMed  Google Scholar 

  • Faghire M, Mandri B, Oufdou K, Bargaz A, Ghoulam C, Ramírez-Bahena MH, Velázquez E, Peix A (2012) Identification at the species and symbiovar levels of strains nodulating Phaseolus vulgaris in saline soils of the Marrakech region (Morocco) and analysis of the otsA gene putatively involved in osmotolerance. Syst Appl Microbiol 35:156–164

    Article  CAS  PubMed  Google Scholar 

  • Ferguson BJ, Mens C, Hastwell AH, Zhang M, Su H, Jones CH, Chu X, Gresshoff PM (2019) Legume nodulation: the host controls the party. Plant Cell Environ 42:41–51

    Article  CAS  PubMed  Google Scholar 

  • Flores-Félix JD, Sánchez-Juanes F, García-Fraile P, Valverde A, Mateos PF, Gónzalez-Buitrago JM, Velázquez E, Rivas R (2019) Phaseolus vulgaris is nodulated by the symbiovar viciae of several genospecies of Rhizobium laguerreae complex in a Spanish region where Lens culinaris is the traditionally cultivated legume. Syst Appl Microbiol 42:240–247

    Article  PubMed  Google Scholar 

  • Food and Agricultural organization of United Nations (FAO) (2018) https://fao.org/faostat/en/#data/QC

  • García-Fraile P, Mulas-García D, Peix A, Rivas R, González-Andrés F, Velázquez E (2010) Phaseolus vulgaris is nodulated in northern Spain by Rhizobium leguminosarum strains harboring two nodC alleles present in American Rhizobium etli strains: biogeographical and evolutionary implications. Can J Microbiol 56:566–657

    Article  CAS  Google Scholar 

  • Geniaux E, Laguerre G, Amarger N (1993) Comparison of geographically distant populations of Rhizobium isolated from root nodules of Phaseolus vulgaris. Mol Ecol 2:295–302

    Article  Google Scholar 

  • Gepts P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. II. Eur Afr Econ Bot 42:86–104

    Article  Google Scholar 

  • Gepts P, Debouck D (1991) Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). In: van Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International and CIAT, Wallingford, pp 7–54

    Google Scholar 

  • Gomes Basso Los F, Ferreira Zielinski AA, Wojeicchowski JP, Nogueira A, Mottin Demiate I (2018) Beans (Phaseolus vulgaris L.): whole seeds with complex chemical composition. Curr Opin Food Sci 19:63–71

    Article  Google Scholar 

  • Grange L, Hungria M (2004) Genetic diversity of indigenous common bean (Phaseolus vulgaris) rhizobia in two Brazilian ecosystems. Soil Biol Biochem 36:1389–1398

    Article  CAS  Google Scholar 

  • Gunnabo AH, Geurts R, Wolde-Meskel E, Degefu T, Giller KE, van Heerwaarden J (2019) Genetic interaction studies reveal superior performance of Rhizobium tropici CIAT899 on a range of diverse east African common bean (Phaseolus vulgaris L.) genotypes. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01763-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurkanli CT, Ozkoc I, Gunduz I (2013) Genetic diversity of rhizobia nodulating common bean (Phaseolus vulgaris L.) in the Central Black Sea region of Turkey. Ann Microbiol 63:971–987

    Article  Google Scholar 

  • Gwyn AB, Handelsman J (1993) Evaluation of a strategy for identifying nodulation competitiveness genes in Rhizobium leguminosavum biovar phaseoli. J Gene Microbiol 139:529–538

    Article  Google Scholar 

  • Herrera-Cervera JA, Jb C-M, Laguerre G, Tichy HV, Requena N, Amarger N, Martinez-Romero E, Olivares J, Sanjuan J (1999) At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soil. FEMS Microbiol Ecol 30:87–97

    Article  CAS  Google Scholar 

  • Huo Y, Tong W, Wang J, Wang F, Bai W, Wang E, Shi P, Chen W, Wei G (2019) Rhizobium chutanense sp. nov., isolated from root nodules of Phaseolus vulgaris in China. Int J Syst Evol Microbiol 69:2049–2056

    Article  CAS  PubMed  Google Scholar 

  • Jordan DC (1984) Family III Rhizobiaceae. In: Krieg NR, Holt JG (eds) Bergeys manual of systematic bacteriology, vol I. Williams and Wilkins Co., Baltimore, pp 234–242

    Google Scholar 

  • Junier P, Alfaro M, Guevara R, Witzel KP, Caru M (2014) Genetic diversity of Rhizobium present in nodules of Phaseolus vulgaris L. cultivated in two soils of the central region in Chile. Appl Soil Ecol 80:60–66

    Article  Google Scholar 

  • Karanja NK, Wood M (1988) Selecting Rhizobium phaseoli strains for use with beans (Phaseolus vulgaris L.) in Kenya: ineffectiveness and tolerance of acidity and aluminium. Plant Soil 112:7–13

    Article  CAS  Google Scholar 

  • Kawaka F, Makonde H, Dida M, Opala P, Ombori O, Maingi J, Muoma J (2018) Genetic diversity of symbiotic bacteria nodulating common bean (Phaseolus vulgaris) in western Kenya. PLoS ONE. https://doi.org/10.1371/journal.pone.0207403

    Article  PubMed  PubMed Central  Google Scholar 

  • Koskey G, Mburu SW, Njeru EM, Kimiti JM, Ombori O, Maingi JM (2017) Potential of native rhizobia in enhancing nitrogen fixation and yields of climbing beans (Phaseolus vulgaris L.) in contrasting environments of Eastern Kenya. Front Plant Sci 8:443

    Article  PubMed  PubMed Central  Google Scholar 

  • Laguerre G, Fernandez MP, Edel V, Normand P, Amarger N (1993a) Genomic heterogeneity among French Rhizobium strains isolated from Phaseolus vulgaris L. Int J Syst Bacteriol 43:761–767

    Article  CAS  PubMed  Google Scholar 

  • Laguerre G, Geniaux E, Mazurier SI, Rodriguez-Casartelli R, Amarger N (1993b) Conformity and diversity among field isolates of Rhizobium leguminosarum bv. viciae, bv. trifolii, bv. phaseoli revealed by DNA hybridization using chromosome and plasmid probes. Can J Microbiol 39:412–419

    Article  CAS  Google Scholar 

  • Li X, Tong W, Wang L, Rahman SU, Wei G, Tao S (2018) A novel strategy for detecting recent horizontal gene transfer and its application to Rhizobium strains. Front Microbiol 9:973

    Article  PubMed  PubMed Central  Google Scholar 

  • Litalien A, Zeeb B (2020) Curing the earth: a review of anthropogenic soil salinization and plant based strategies for sustainable mitigation. Sci Total Environ 698:134235

    Article  CAS  PubMed  Google Scholar 

  • López-Guerrero MG, Ormeño-Orrillo E, Velázquez E, Rogel MA, Acosta JL, Gónzalez V, Martínez J, Martínez-Romero E (2012) Rhizobium etli taxonomy revised with novel genomic data and analyses. Syst Appl Microbiol 35:353–358

    Article  PubMed  Google Scholar 

  • López-López A, Rogel-Hernández MA, Barois I, Ortiz-Ceballos AL, Martínez J, Ormeno-Orrillo E, Martinez-Romero E (2012) Rhizobium grahamii sp. nov. from nodules of Dalea termatea, Leucocephala and clitoria termatea and Rhizobium mesoamericanum sp. nov. from nodules of Phaseolus vulgaris, Siratro, cowpea and Mimosa pundica. Int J Syst Evol Microbiol 62:2264–2271

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Lopez AS, Negrete-Yankelevich S, Rogel MR, Ormeno-Orrillo E, Martinez J, Martinez-Romero E (2013) Native bradyrhizobia from Los Tuxtlas in Mexico are symbionts of Phaseolus lunatus (Lima bean). Syst Appl Microbiol 36:33–38

    Article  PubMed  Google Scholar 

  • Martínez-Aguilar L, Salazar-Salazar C, Méndez RD, Caballero-Mellado J, Hirsch AM, Vásquez-Murrieta MS, Estrada-de los Santos P (2013) Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris. Anton van Leeuwen 104:1063–1071

    Article  Google Scholar 

  • Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426

    Article  PubMed  Google Scholar 

  • Martinez-Romero E (2003) Diversity of Rhizobium-Phaseolus vulgaris symbiosis: overview and perspectives. Plant Soil 252:11–23

    Article  CAS  Google Scholar 

  • Matsubara M, Zuniga-Davila D (2015) Phenotypic and molecular differences among rhizobia that nodulate Phaseolus lunatus in the Supe valley in Peru. Ann Microbiol 65:1803–1808

    Article  CAS  Google Scholar 

  • Mhamdi R, Jebara M, Aouani ME, Ghrir R, Mars M (1999) Genotypic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris L. grown in Tunisian soils. Biol Fertil Soils 28:313–320

    Article  Google Scholar 

  • Mhamdi R, Laguerre G, Aouani ME, Mars M, Amarger N (2002) Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbiol Ecol 41:77–84

    Article  CAS  PubMed  Google Scholar 

  • Michiels J, Dombrecht B, Vermeiren N, Xi C, Luyten E, Vanderleyden J (1998) Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiol Ecol 26:193–205

    Article  CAS  Google Scholar 

  • Mnasri B, Aouani ME, Mhamdi R (2007) Nodulation and growth of common bean (Phaseolus vulgaris) under water deficiency. Soil Biol Biochem 39:1744–1750

    Article  CAS  Google Scholar 

  • Mnasri B, Saidi S, Chihaoui SA, Mhamdi R (2012) Sinorhizobium americanum symbiovar mediterranense is a predominant symbiont that nodulates and fixes nitrogen with common bean (Phaseolus vulgaris L.) in a Northern Tunisian field. Syst Appl Microbiol 35:263–269

    Article  CAS  PubMed  Google Scholar 

  • Mnsari B, Liu TY, Saidi S, Chen WF, Chen XW, Zhang XX, Mahmdi R (2014) Rhizobium azibense sp. nov., a nitrogen fixing bacterium isolated from root-nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 64:1501–1506

    Article  CAS  Google Scholar 

  • Morad M, Sara S, Alireza E, Reza CM, Mohammad D (2013) Effects of seed inoculation by Rhizobium strains on yield and yield components in common bean cultivars (Phaseolus vulgaris L.). Int J Biosci 3:134–141

    Article  Google Scholar 

  • Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38:84–90

    Article  PubMed  Google Scholar 

  • Mrabet M, Mhamdi R, Tajini F, Tiwari R, Trabelsi M, Aouani ME (2005) Competitiveness and symbiotic effectiveness of a R. gallicum strain isolated from root nodules of Phaseolus vulgaris. Europ J Agron 22:209–216

    Article  Google Scholar 

  • Mulas D, García-Fraile P, Carro L, Ramírez-Bahena MH, Casquero P, Velázquez E, González-Andrés F (2011) Distribution and efficiency of Rhizobium leguminosarum strains nodulating Phaseolus vulgaris in Northern Spanish soils: Selection of native strains that replace conventional N fertilization. Soil Biol Biochem 43:2283–2293

    Article  CAS  Google Scholar 

  • Mwenda GM, O'Hara GW, De Meyer SE, Howieson JG, Terpolilli JJ (2018) Genetic diversity and symbiotic effectiveness of Phaseolus vulgaris-nodulating rhizobia in Kenya. Syst Appl Microbiol 41:291–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira-Santos J, Antunes JEL, Araujo ASF, Pereira-Lyra MCC, Gomes RLF, Lopes ACA, Figueiredo MVB (2011) Genetic diversity amonmg native isolates of rhizobia from Phaseolus lunatus. Ann Microbiol 61:437–444

    Article  Google Scholar 

  • Ormeño-Orrillo E, Vinuesa P, Zuniga-Davilla D, Martinez-Romero E (2006) Molecular diversity of native bradyrhizobia isolated from Lima bean (Phaseolus lunatus L.) in Preu. Syst Appl Microbiol 29:253–262

    Article  PubMed  CAS  Google Scholar 

  • Ormeño-Orrillo E, Menna P, Almeida LG, Ollero FJ, Nicolás MF, Pains Rodrigues E, Shigueyoshi Nakatani A, Silva Batista JS, Oliveira Chueire LM, Souza RC, Ribeiro Vasconcelos AT, Megías M, Hungria M, Martínez-Romero E (2012) Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genom 13:735

    Article  CAS  Google Scholar 

  • Pastor-Bueis R, Sánchez-Cañizares C, James EK, González-Andrés F (2019) Formulation of a highly effective inoculant for common bean based on an autochthonous elite strain of Rhizobium leguminosarum bv. phaseoli, and genomic-based insights into its agronomic performance. Front Microbiol 10:2724

    Article  PubMed  PubMed Central  Google Scholar 

  • Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42

    Article  Google Scholar 

  • Pereira EG, Lacerda AM, Lima AS, Moreira FMS, Carvalho D, Siqueira JQ (2002) Genotypic, phenotypic and symbiotic diversity amongst rhizobia isolates from Phaseolus vulgaris L. growing in the Amazon region. In: Pedrosa FO, Hungria M, Yates G, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Current plant science and biotechnology in agriculture. Springer, Dordrecht38

    Google Scholar 

  • Pérez-Ramírez NO, Rogel MA, Wang E, Castellanos JZ, Martínez-Romero E (1998) Seeds of Phaseolus vulgaris bean carry Rhizobium etli. FEMS Microbiol Ecol 26:289–296

    Article  Google Scholar 

  • Rahman MH, Khatun S, Ali SR, Yasmin S, Kamruzzaman M, Rashid MH (2018) Morpho-physiological diversity of root nodule rhizobia from Mimosa (Mimosa pudica L.) and water Mimosa (Neptunia oleracea L.). J Bacteriol Mycol 5:1061

    Google Scholar 

  • Rajnovic I, Ramírez-Bahena MH, Sánchez-Juanes F, González-Buitrago JM, Kajic S, Peix Á, Velázquez E, Sikora S (2019) Phylogenetic diversity of rhizobia nodulating Phaseolus vulgaris in Croatia and definition of the symbiovar phaseoli within the species Rhizobium pisi. Syst Appl Microbiol 42:126019

    Article  PubMed  Google Scholar 

  • Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, Mateos PF, Martínez-Molina E, Velázquez E (2008) Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 58(11):2484–2490

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Puebla ST, Hernández MAR, Guerrero Ruiz G, Ormeño-Orrillo E, Martinez-Romero JC, Servín-Garcidueñas LE, Núñez-de la Mora A, Amescua-Villela G, Negrete-Yankelevich S, Martínez-Romero E (2019) Nodule bacteria from the cultured legume Phaseolus dumosus (belonging to the Phaseolus vulgaris cross-inoculation group) with common tropici phenotypic characteristics and symbiovar but distinctive phylogenomic position and chromid. Syst Appl Microbiol 42:373–382

    Article  PubMed  CAS  Google Scholar 

  • Ren B, Wang X, Duan J, Ma J (2019) Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 365:919–922

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro RA, Rogel MA, Lopez-Lopez A, Ormeno-Orrillo E, Barcellos FG, Martinez J, Thompson FL, Martinez-Romero E, Hungria M (2012) Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 62:1179–1184

    Article  PubMed  Google Scholar 

  • Ribeiro RA, Martins TB, Ormeño-Orrillo E, Marçon Delamuta JR, Rogel MA, Martínez-Romero E, Hungria M (2015) Rhizobium ecuadorense sp. nov., an indigenous N2-fixing symbiont of the Ecuadorian common bean (Phaseolus vulgaris L.) genetic pool. Int J Syst Evol Microbiol 65:3162–3169

    Article  CAS  PubMed  Google Scholar 

  • Rípodas C, Castaingts M, Clúa J, Villafañe J, Blanco FA, Zanetti ME (2019) The PvNF-YA1 and PvNF-YB7 subunits of the heterotrimeric NF-Y transcription factor influence strain preference in the Phaseolus vulgaris-Rhizobium etli symbiosis. Front Plant Sci 10:221

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivas R, Velázquez E, Willems A, Vizcaíno N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martínez-Molina E (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) druce. Appl Environ Microbiol 68:5217–5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas R, Suba WA, Rao NS, Mateos PF, Dazzo FB, Kroppenste RM, Martinez-Molina E, Gillis M, Velazques E (2003) Description of Devosia neputunia sp. novel that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Micrbiol 24:47–53

    Article  Google Scholar 

  • Román-Ponce B, Zhang YJ, Vásquez-Murrieta MS, Sui XH, Chen WF, Padilla JCA, Guo XW, Gao JL, Yan J, Wei Ge H, Wang ET (2016) Rhizobium acidisoli sp. nov., isolated from 1 root nodules of Phaseolus vulgaris in acid 2 soils in Mexico. Int J Syst Evol Microbiol 66:398–406

    Article  PubMed  CAS  Google Scholar 

  • Rouhrazi K, Khodakaramian G, Velázquez E (2016) Phylogenetic diversity of rhizobial species and symbiovars nodulating Phaseolus vulgaris in Iran. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnw024

    Article  PubMed  Google Scholar 

  • Samago TY, Anniye EW, Dakora FD (2018) Grain yield of common bean (Phaseolus vulgaris L.) varieties is markedly increased by rhizobial inoculation and phosphorus application in Ethiopia. Symbiosis 75:245–255

    Article  PubMed  Google Scholar 

  • Segovia L, Young JPW, Martínez-Romero E (1993) Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377

    Article  CAS  PubMed  Google Scholar 

  • Shamseldin A (2007) Use of DNA markers to select well adapted Phaseolus-symbionts under acid and high temperature conditions. Biotechno Lett 29:37–44

    Article  CAS  Google Scholar 

  • Shamseldin A, Werner D (2004) Selection of competitive strains of Rhizobium nodulating Phaseolus vulgaris and adapted to environmental conditions in Egypt, using the gus-reporter gene technique. World J Microbiol Biotechnol 20:377–382

    Article  CAS  Google Scholar 

  • Shamseldin A, Werner D (2005) High salt and high pH tolerance of new isolated Rhizobium etli strains from Egyptian soils. Curr Microbiol 50:11–16

    Article  CAS  PubMed  Google Scholar 

  • Shamseldin A, Werner D (2007) Presence of Rhizobium etli bv. phaseoli and Rhizobium gallicum bv. gallicum in Egyptian soils. World J Microbiol Biotechnol 23:285–289

    Article  Google Scholar 

  • Shamseldin A, Vinuesa P, Thierfelder H, Werner D (2005) Rhizobium etli and Rhizobium gallicum nodulate Phaseolus vulgaris in Egyptian soils and display cultivar-dependent symbiotic efficiency. Symbiosis 38:145–161

    CAS  Google Scholar 

  • Silva C, Vinuesa P, Eguiarte LE, Martínez-Romero E, Souza V (2003) Rhizobium etli and Rhizobium gallicum nodulate common bean (Phaseolus vulgaris) in a traditionally managed milpa plot in Mexico: population genetics and biogeographic implications. Appl Environ Microbiol 69:884–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza V, Eguiarte L, Avila G, Cappello R, Gallardo C, Montoya J, Piñero D (1994) Genetic structure of Rhizobium etli biovar phaseoli associated with wild and cultivated bean plants (Phaseolus vulgaris and Phaseolus coccineus) in Morelos. Mexico Appl Environ Microbiol 60:1260–1268

    Article  CAS  PubMed  Google Scholar 

  • Talbi C, Delgado MJ, Girard L, Ramírez-Trujillo A, Caballero-Mellado J, Bedmar EJ (2010) Burkholderia phymatum strains capable of nodulating Phaseolus vulgaris are present in Moroccan soils. Appl Environ Microbiol 76:4587–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamimi SM, Young JPW (2004) Rhizobium etli is the dominant common bean nodulating rhizobia in cultivated soils from different locations in Jordan. Appl Soil Ecol 26:193–200

    Article  Google Scholar 

  • Tong W, Li X, Wang E, Cao Y, Chen W, Tao S, Wei G (2020) Genomic insight into the origins and evolution of symbiosis genes in Phaseolus vulgaris microsymbionts. BMC Genom 21:186

    Article  CAS  Google Scholar 

  • Valverde A, Igual JM, Peix A, Cervantes E, Velazquez E (2006) Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol 56:2631–2637

    Article  CAS  PubMed  Google Scholar 

  • Valverde A, Velázquez E, Cervantes E, Igual JM, van Berkum P (2011) Evidence of an American origin for symbiosis-related genes in Rhizobium lusitanum. Appl Environ Microbiol 77:5665–5670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velázquez E, Martínez-Romero E, Rodríguez-Navarro DN, Trujillo ME, Daza A, Mateos PF, Martínez-Molina E, van Berkum P (2001) Characterization of rhizobial isolates of Phaseolus vulgaris by staircase electrophoresis of low-molecular-weight RNA. Appl Environ Microbiol 67:1008–1010

    Article  PubMed  PubMed Central  Google Scholar 

  • Verástegui-Valdés MM, Zhang YJ, Rivera-Orduna FN, Cheng HP, Sui XH, Wang ET (2014) Microsymbionts of Phaseolus vulgaris in acid and alkaline soils of Mexico. Syst Appl Microbiol 37:605–612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang TE, Chen WX (2004) Estimation of biotic and a biotic factors that affect migration of Rhizobia. In: Werner D (ed) Biological resources and migration. Springer, Berlin

    Google Scholar 

  • Wang ET, Martinez-Romero E (2000) Sesbania herbacea-Rhizobium huautlense nodulation in floded soils and comparative characterization of S. herbacea-nodulating Rhizobium in different environments. Microbiol Ecol 40:25–32

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang TE, Wu LJ, Sui XH Jr, Ying L, Chen WX (2011) Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. Int J Syst Evol Microbiol 61:2582–2588

    Article  PubMed  Google Scholar 

  • Wang L, Cao Y, Wang ET, Ya J, Qiao S, Jiao ZS, Liu ZL, Wei GH (2016) Biodiversity and biogeography of rhizobia associated with common bean (Phaseolus vulgaris L.) in Shaanxi Province. Syst Appl Microbiol 39:211–219

    Article  PubMed  Google Scholar 

  • Yan J, Yan H, Liu LX, Chen WF, Zhang XX, Verástegui-Valdés MM, Wang ET, Han XZ (2017) Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil. Arch Microbiol 199:97–104

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Blair MW, Wang S (2008) Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat markers. Theor Appl Gen 117:629–640

    Article  CAS  Google Scholar 

  • Zinga MK, Jaiswal SK, Dakora FD (2017) Presence of diverse rhizobial communities responsible for nodulation of common bean (Phaseolus vulgaris) in South African and Mozambican soils. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiw236

    Article  PubMed  Google Scholar 

  • Zurdo-Piñeiro JL, Velázquez E, Lorite MJ, Brelles-Mariño G, Schröder EC, Bedmar EJ, Mateos PF, Martínez-Molina E (2004) Identification of fast-growing rhizobia nodulating tropical legumes from Puerto Rico as Rhizobium gallicum and Rhizobium tropici. Syst Appl Microbiol 27:469–477

    Article  PubMed  Google Scholar 

  • Zurdo-Piñeiro JL, García-Fraile P, Rivas R, Peix A, León-Barrios M, Willems A, Mateos PF, Martínez-Molina E, Velázquez E, Van Berkum P (2009) Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgaris have characteristics in common with Sinorhizobium meliloti isolates from main land Spain. Appl Environ Microbiol 75:2354–2359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This review article was funded under the financial project STDF1268 from the Academy of Scientific Research and Technology Applications, Cairo, Egypt. Special thanks should be given by authors to the reviewers who gave important notes that contributed significantly to strength our manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AS and EV are having equal contribution for writing this article and approving it.

Corresponding author

Correspondence to Abdelaal Shamseldin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3731 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamseldin, A., Velázquez, E. The promiscuity of Phaseolus vulgaris L. (common bean) for nodulation with rhizobia: a review. World J Microbiol Biotechnol 36, 63 (2020). https://doi.org/10.1007/s11274-020-02839-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02839-w

Keywords

Navigation