Skip to main content

Advertisement

Log in

IDRA: A flexible system architecture for next generation wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless sensor networks consist of embedded devices (sensor nodes), equipped with a low-power radio. They are used for many applications: from wireless building automation to e-health applications. However, due to the limited capabilities of sensor nodes, designing network protocols for these constrained devices is currently very challenging. Therefore, this paper presents the IDRA platform: an information driven architecture designed to support next-generation applications on resource constrained networked objects. IDRA supports simple but useful optimizations at an architectural level. These include support for cross-protocol interactions, energy efficiency optimizations, QoS optimizations (packet priorities, dynamic protocol selection), mobility support and heterogeneous network support. The paper shows how the development of protocols is improved by using an architecture which delegates specific tasks to a central system, decreasing the memory requirements of associated network protocols. A thorough experimental performance analysis demonstrates that IDRA is much more scalable in terms of memory requirements, energy requirements and processing overhead than traditional system architectures. Finally, the paper discusses how the optimizations presented in this paper can be used for the clean-slate design of architectures for other wireless or wired network types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Due to added functionality and several optimizations, the total memory requirements differ from those reported in a previous publication [1].

  2. Even though the IDRA packet part descriptors do not contain protocol logic, it is possible in IDRA to associate packet-dependent protocol logic to existing packet types. For example, a ARP protocol can register itself to be executed before the transmission of a UDP/IP packet (see Sect. 3.2).

References

  1. Poorter, E. D., Moerman, I., & Demeester, P. (2009). An information driven sensornet architecture (best paper award). In The third international conference on sensor technologies and applications (sensorcomm 2009), Athens/Glyfada, Greece, June 18–23.

  2. Akyildiz, I. F., Su, W., Skarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38, 393–422.

    Article  Google Scholar 

  3. Bharathidasan, A., & Ponduru, V. A. S. (2002). Sensor networks: An overview. Technical report, Department. of Computer Science, University of California at Davis.

  4. Yarvis, M., Kushalnagar, N., Singh, H., Rangarajan, A., Liu, Y., & Singh, S. (2005). Exploiting heterogeneity in sensor networks. In Proceedings of the IEEE Infocom.

  5. Troubleyn, E., Poorter, E. D., Moerman, I., & Demeester, P. (2008). AMoQoSA: Adaptive modular QoS architecture for wireless sensor networks. SENSORCOMM 2008, Cap Esterel, France.

  6. Polastre, J., Hui, J., Levis, P., Zhao, J., Culler, D., Shenker, S., & Stoica, I. (2005). A unifying link abstraction for wireless sensor networks. SenSys ’05, San Diego, CA, USA, pp. 76–89.

  7. Braden, R., Faber, T., & Handley, M. (2003). From protocol stack to protocol heap: role-based architecture. SIGCOMM Computer Communications Review, 33(1), 17–22.

    Article  Google Scholar 

  8. Culler, D., Dutta, P., Eee, C. T., Fonseca, R., Hui, J., Levis, P., et al. (2005). Towards a sensor network architecture: Lowering the waistline. In Proceedings of the tenth workshop on hot topics in operating systems (HotOS X).

  9. Dunkels, A., Österlind, F., & He, Z. (2007). An adaptive communication architecture for wireless sensor networks. In SenSys ’07: Proceedings of the 5th international conference on Embedded networked sensor systems, (pp. 335–349). New York, NY, USA: ACM.

  10. Demirkol, I., Ersoy, C., & Alagoz, F. (2005). MAC protocols for wireless sensor networks: A survey. IEEE Communications Magazine.

  11. Rajagopalan, R., & Varshney, P. K. (2006). Data-aggregation techniques in sensor networks: A survey. Communications Surveys & Tutorials, IEEE, 8(4), 48–63. Fourth Quarter.

    Article  Google Scholar 

  12. Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2007). In-network aggregation techniques for wireless sensor networks: A survey. Wireless Communications, IEEE, 14(2), 70–87.

    Article  Google Scholar 

  13. Hoebeke, J., Moerman, I., Dhoedt, B., & Demeester, P. (2005). Towards adaptive ad hoc network routing. International Journal of Wireless and Mobile Computing, 1.

  14. Evy, T., Eli, D. P., Peter, R., Moerma, I., & Piet, D. (2010). Supporting protocol-independent adaptive qos in wireless sensor networks. In Sensor networks, ubiquitous, and trustworthy computing (SUTC), 2010 IEEE international conference on (pp. 253 –260).

  15. Ali, M., Voigt, T., & Uzmi, Z. A. (2006). Mobility management in sensor networks. Workshop proceedings of 2nd IEEE DCOSS.

  16. Akyildiz, I., & Kasimoglu, I. (2004). Wireless sensor and actor networks: Research challenges. Ad Hoc Networks Journal (Elsevier), 2(4), 351–367.

    Article  Google Scholar 

  17. The internet of things. ITU Internet Reports. (2005).

  18. Ibbt ilab.t wireless sensor test bed. http://ilabt.ibbt.be.

  19. Tytgat, L., Jooris, B., De Mil, P., Latre, B., Moerman, I., & Demeester, P. (2009). Demo abstract: Wilab, a real-life wireless sensor testbed with environment emulation. Published in European conference on Wireless Sensor Networks, EWSN adjunct poster proceedings (EWSN), Cork, Ireland.

  20. Ad hoc on-demand distance vector (aodv) routing. networking group request for comments (rfc): 3561, http://tools.ietf.org/html/rfc3561, (July 2003).

  21. Poorter, E. D., Bouckaert, S., Moerman, I., & Demeester, P. (2010). Non-intrusive aggregation in wireless sensor networks. Ad Hoc Networks Journal (Elsevier).

  22. Osterlind, F., & Dunkels, A. (2008). Approaching the maximum 802.15.4 multi-hop throughput. Technical report, Swedish Institute of Computer Science, SICS Technical Report T2008:05, ISSN 1100-3154.

  23. Collection Tree Protocol (CTP) for tinyOS 2.x. (2008). http://www.tinyos.net/tinyos-2.x/doc/html/tep123.htm.

  24. Tinyos operating system. http://www.tinyos.net.

  25. Buettner, M., Yee, G., Anderson, E., & Han, R. (2006). X-MAC: A short preamble mac protocol for duty-cycledwireless networks (pp. 307–320). Boulder, CO.

  26. Ye, W., Silva, F., & Heidemann, J. (2006). Ultra-low duty cycle mac with scheduled channel polling (pp. 321–334). Boulder, CO.

  27. LUNAR-Lightweight Underlay Network Ad hoc Routing. (2008). http://cn.cs.unibas.ch/projects/lunar.

  28. Tymo source code repository. tymo: Dymo implementation for tinyos. http://tymo.sourceforge.ne.

  29. Hill, J., & Culler, D. (2002). Mica: A wireless platform for deeply embedded networks. IEEE Micro, 22(6), 12–24.

    Article  Google Scholar 

  30. Ye, W., Heidemann, J., & Estrin , D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In 21st conference of the IEEE computer and communications societies (INFOCOM), Vol. 3, (pp. 1567–1576).

  31. Tavakoli, A., & Culler, D. (2009). HYDRO: A hybrid routing protocol for lossy and low power networks. IETF Internet Draft, http://tools.ietf.org/html/draft-tavakoli-hydro-0.

  32. Chakeres, I. D., & Perkins, C. E. (2008). Dynamic manet on-demand routing protocol (dymo). IETF Internet Draft, draft-ietf-manet-dymo-12.txt, http://ianchak.com/dymo/draft-ietf-manet-dymo-12.htm.

  33. Tavakoli, A., Dutta, P., Jeong, J., Kim, S., Ortiz, J., Culler, D., Levis, P., & Shenker, S. (2007). A modular sensornet architecture: past, present, and future directions. SIGBED Rev., 4(3), 49–54.

    Article  Google Scholar 

  34. Ee, C. T., Fonseca, R., Kim, S., Moon, D., Tavakoli, A., Culler, D., Shenker, S., & Stoica, I. (November 2006). A modular network layer for sensornets. In the Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2006), Seattle, WA.

  35. Klues, K., Hackmann, G., Chipara, O., & Lu, C. (2007). A component-based architecture for power-efficient media access control in wireless sensor networks. In SenSys ’07: Proceedings of the 5th international conference on Embedded networked sensor systems (pp. 59–72). New York, NY, USA: ACM.

  36. Contiki - the operating system for embedded smart objects—the internet of things . http://www.sics.se/contiki.

  37. Tavakoli, A., Chu, D., Hellerstein, J. M., Levis, P., & Shenker, S. (2007). A declarative sensornet architecture. SIGBED Rev., 4(3), 55–60.

    Article  Google Scholar 

  38. Chu, D., Hellerstein, J. M., te Lai, T. (2008). Optimizing declarative sensornets. In SenSys ’08: Proceedings of the 6th ACM conference on Embedded network sensor systems, (pp. 403–404). New York, NY, USA, ACM.

  39. Melodia, T., Vuran, M. C., & Pompili, D. (2006). The state of the art in cross-layer design for wireless sensor networks. Wireless Syst./Network Architect., LNCS 3883, pp. 78–92.

Download references

Acknowledgements

This research is funded by the FP7 SPITFIRE project, by the FWO-Fl CLAWS project, by the IWT-SBO SymbioNets project and by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) through a PhD. grant for E. De Poorter and E. Troubleyn. The author also wishes to thank L. Tytgat for implementing the optimized CC2420 radio controller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli De Poorter.

Additional information

This article elaborates on the paper ‘An Information Driven Sensornet Architecture’ [1]. It adds more in-depth descriptions of the proposed architectural optimizations and adds quantitative analyses for each discussed technique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Poorter, E., Troubleyn, E., Moerman, I. et al. IDRA: A flexible system architecture for next generation wireless sensor networks. Wireless Netw 17, 1423–1440 (2011). https://doi.org/10.1007/s11276-011-0356-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-011-0356-5

Keywords

Navigation