Skip to main content
Log in

Performance evaluation of softer vertical handovers in multiuser heterogeneous wireless networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In the future fifth generation (5G) networked society, devices will integrate heterogeneous radio access technologies (RATs) to improve the network performance and the user quality of experience. In this paper, we focus on softer vertical handover (SRVH), discussing its feasibility and its performance in a multiuser scenario. Specifically, a new taxonomy for vertical handovers is proposed to resolve ambiguities in current terminology and technical issues related to SRVH implementation are discussed. Then, a simple but accurate analytical model is proposed to evaluate the performance of SRVH and results are provided with reference to best effort services in the presence of two RATs. Two case studies are considered, a mobile controlled approach with uncoordinated RATs and a network controlled approach with coordination among RATs. Results demonstrate that SRVHs are useful to allow finer granularity in resource allocation when there is coordination among RATs, although they fail to provide throughput improvements if they are selfishly performed by mobile terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Compared to the one introduced in [20], the term softer extends its meaning from only horizontal handovers to also vertical handovers, and from the joint management of the transmitting power to the joint management of any resource, such as bandwidth portions or time slots.

  2. A procedure aggregating physical layer resources (bandwidth, time slots, etc.) would not involve multiple RATs, thus softer vertical handovers are not possible acting at the physical layer.

  3. Resources can be combinations of time intervals, power, bandwidth, or codes, depending on the specific RAT.

  4. With respect to [19], where link layer throughput is shown, a reduction of 2.67 % is applied to take into account the TCP/IP overhead.

  5. Although cellular networks provide ranges up to kilometers, here shorter ranges are considered due to the assumed scenarios. In fact, in both home networks and hot spots scenarios the cell range is normally limited by reducing the output power; in the former case, the scope is to restrict the cell coverage to the home area, and in the second to improve the resource reuse in the space domain.

  6. Please remark, in any case, that the term handover corresponds to a modification of the point of access that does not necessarily imply mobility.

References

  1. 3GPP: RAN S1.14, UTRA FDD; physical layer procedures.

  2. 3GPP: TR 36.942, evolved universal terrestrial radio access (E-UTRA); radio frequency (RF) system scenarios.

  3. 3GPP: TS 24.312, access network discovery and selection function (ANDSF) management object (MO).

  4. 3GPP: TS 25.308, technical specification group radio access network; UTRA FDD; high speed downlink packet access (HSDPA); overall description.

  5. 3GPP: TS 25.331, technical specification group radio access network; radio resource control (RRC); protocol specification.

  6. Akyildiz, I. F., Gutierrez-Estevez, D. M., & Reyes, E. C. (2010). The evolution to 4G cellular systems: LTE-advanced. Physical Communication, 3(4), 217–244. doi:10.1016/j.phycom.2010.08.001.

    Article  Google Scholar 

  7. Bamis, A., Boukerche, A., Chatzigiannakis, I., & Nikoletseas, S. (2008). A mobility aware protocol synthesis for efficient routing in ad hoc mobile networks. Computer Networks, 52(1), 130–154. doi:10.1016/j.comnet.2007.09.023.

    Article  MATH  Google Scholar 

  8. Bazzi, A. (2010). A softer vertical handover algorithm for heterogeneous wireless access networks. In Personal indoor and mobile radio communications (PIMRC), 2010 IEEE 21st international symposium on (pp. 2156–2161). doi:10.1109/PIMRC.2010.5671666.

  9. Bazzi, A. (2011). On uncoordinated multi user multi RAT combining. In Vehicular technology conference (VTC Fall), 2011 IEEE (pp. 1–6). doi:10.1109/VETECF.2011.6093056.

  10. Bazzi, A., Pasolini, G., & Andrisano, O. (2008). Multiradio resource management: Parallel transmission for higher throughput? EURASIP Journal on Advances in Signal Processing. doi:10.1155/2008/763264.

    Google Scholar 

  11. Ben Ali, R., & Pierre, S. (2009). On the impact of soft vertical handoff on optimal voice admission control in PCF-based WLANs loosely coupled to 3G networks. IEEE Transactions on Wireless Communications, 8, 1356–1365.

    Article  Google Scholar 

  12. Boukerche, A. (2005). Handbook of algorithms for wireless networking and mobile computing. Boca Raton: CRC Press.

    Book  Google Scholar 

  13. Bruno, R., Conti, M., & Gregori, E. (2008). An accurate closed-form formula for the throughput of long-lived TCP connections in IEEE 802.11 WLANs. Computer Networks, 52(1), 199–212. doi:10.1016/j.comnet.2007.09.017.

    Article  MATH  Google Scholar 

  14. Buddhikot, M., Chandranmenon, G., Han, S., Lee, Y., Miller, S., & Salgarelli, L. (2003). Integration of 802.11 and third-generation wireless data networks. In INFOCOM 2003. twenty-second annual joint conference of the IEEE computer and communications. IEEE societies (Vol. 1, pp. 503–512). doi:10.1109/INFCOM.2003.1208701.

  15. Charles, J. P., Furuskar, A., Frodigh, M., Jeux, S., Saadani, A., Hassan, M., et al. (2015). Refined statistical analysis of evolution approaches for wireless networks. IEEE Transactions on Wireless Communications, 14(5), 2700–2710. doi:10.1109/TWC.2015.2391097.

    Article  Google Scholar 

  16. Chebrolu, K., & Rao, R. (2006). Bandwidth aggregation for real-time applications in heterogeneous wireless networks. IEEE Transactions on Mobile Computing, 5(4), 388–403. doi:10.1109/TMC.2006.1599407.

    Article  Google Scholar 

  17. Dimou, K., Agero, R., Bortnik, M., Karimi, R., Koudouridis, G., Kaminski, S., et al. (2005). Generic link layer: A solution for multi-radio transmission diversity in communication networks beyond 3G. In Vehicular technology conference, 2005. VTC-2005-fall. 2005 IEEE 62nd (Vol. 3, pp. 1672–1676). doi:10.1109/VETECF.2005.1558226.

  18. Ford, A., Raiciu, C., Handley, M., Barré, S., & Iyengar, J. (2011). Architectural guidelines for multipath TCP development. IETF RFC 6182.

  19. Holma, H., & Toskala, A. (2007). HSDPA/HSUPA for UMTS. Hoboken: Wiley.

    Google Scholar 

  20. Holma, H., & Toskala, A. (2007). WCDMA for UMTS. Hoboken: Wiley.

    Book  Google Scholar 

  21. Hsieh, H. Y., & Sivakumar, R. (2005). A transport layer approach for achieving aggregate bandwidths on multi-homed mobile hosts. Wireless Networks, 11, 99–114.

    Article  Google Scholar 

  22. Huang, H., & Cai, J. (2006). Adding network-layer intelligence to mobile receivers for solving spurious TCP timeout during vertical handoff. IEEE Network, 20, 24–31.

    Article  Google Scholar 

  23. IEEE Std 802.21-2008: IEEE standard for local and metropolitan area networks- part 21: Media independent handover (2009). doi:10.1109/IEEESTD.2009.4769367.

  24. IEEE Std 802.11e-2005: Supplement to part 11: Wireless medium access control (MAC) and physical layer (PHY) specifications: Medium access control (MAC) enhancements for quality of service (QoS) (2005).

  25. Iyengar, J., Amer, P., & Stewart, R. (2006). Concurrent multipath transfer using SCTP multihoming over independent end-to-end paths. IEEE/ACM Transactions on Networking, 14(5), 951–964. doi:10.1109/TNET.2006.882843.

    Article  Google Scholar 

  26. Jain, R., Chiu, D. M., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer system. Tech. rep., Digital Equipment Corp.

  27. Khan, M., Toker, A., Sivrikaya, F., & Albayrak, S. (2011). Cooperation-based resource allocation and call admission for wireless network operators. Telecommunication Systems (pp. 1–13). doi:10.1007/s11235-010-9412-1.

  28. Luo, J., Mukerjee, R., Dillinger, M., Mohyeldin, E., & Schulz, E. (2003). Investigation of radio resource scheduling in WLANs coupled with 3G cellular network. IEEE Communications Magazine, 41(6), 108–115.

    Article  Google Scholar 

  29. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., et al. (2008). Openflow: Enabling innovation in campus networks. SIGCOMM Computer Communication Review, 38(2), 69–74. doi:10.1145/1355734.1355746.

    Article  Google Scholar 

  30. Naoe, H., Wetterwald, M., & Bonnet, C. (2007). IPv6 soft handover applied to network mobility over heterogeneous access networks. In IEEE 8th international symposium on personal, indoor and mobile radio communications, 2007. (PIMRC 2007), Athens, Greece (pp. 1–5). IEEE.

  31. Nguyen, S. C., Zhang, X., Nguyen, T. M. T., & Pujolle, G. (2011). Evaluation of throughput optimization and load sharing of multipath TCP in heterogeneous networks. In Wireless and optical communications networks (WOCN), 2011 eighth international conference on (pp. 1–5). doi:10.1109/WOCN.2011.5872966.

  32. Nielsen, J. J., Madsen, T. K., & Schwefel, H. P. (2011). Location assisted handover optimization for heterogeneous wireless networks. In Wireless conference 2011—Sustainable wireless technologies (European Wireless), 11th European (pp. 1–8).

  33. Niyato, D., & Hossain, E. (2006). A cooperative game framework for bandwidth allocation in 4G heterogeneous wireless networks. In Communications. ICC’06. IEEE international conference on (Vol. 9, pp. 4357–4362). doi:10.1109/ICC.2006.255766.

  34. Niyato, D., & Hossain, E. (2008). A noncooperative game-theoretic framework for radio resource management in 4G heterogeneous wireless access networks. IEEE Transactions on Mobile Computing, 7(3), 332–345. doi:10.1109/TMC.2007.70727.

    Article  Google Scholar 

  35. Pazzi, R. W., Zhang, Z., & Boukerche, A. (2010). Design and evaluation of a novel MAC layer handoff protocol for IEEE 802.11 wireless networks. Journal of Systems and Software, 83(8), 1364–1372. doi:10.1016/j.jss.2010.02.041. Performance Evaluation and Optimization of Ubiquitous Computing and Networked Systems.

  36. Ramaboli, A. L., Falowo, O. E., & Chan, A. H. (2012). Bandwidth aggregation in heterogeneous wireless networks: A survey of current approaches and issues. Journal of Network and Computer Applications, 35(6), 1674–1690. doi:10.1016/j.jnca.2012.05.015.

    Article  Google Scholar 

  37. Rutagemwa, H., Pack, S., Shen, X., & Mark, J. (2007). Robust cross-layer design of wireless-profiled TCP mobile receiver for vertical handover. IEEE Transactions on Vehicular Technology, 56, 3899–3911.

    Article  Google Scholar 

  38. She, J., Mei, J., Ho, J., Ho, P. H., & Ji, H. (2010). Layered adaptive modulation and coding for 4G wireless networks. In Global telecommunications conference (GLOBECOM 2010), 2010 IEEE (pp. 1–6). doi:10.1109/GLOCOM.2010.5683680.

  39. Shu, T., Liu, M., Li, Z., & Zheng, K. (2009). Network-layer soft vertical handoff schemes without packet reordering. In Local computer networks. LCN 2009. IEEE 34th conference on (pp. 285–288). doi:10.1109/LCN.2009.5355089.

  40. Sivakumar, H., Bailey, S., & Grossman, R. L. (2000). PSockets: The case for application-level network striping for data intensive applications using high speed wide area networks. In Proceedings of the 2000 ACM/IEEE conference on supercomputing (CDROM), Supercomputing’00. IEEE computer society, Washington, DC, USA. http://dl.acm.org/citation.cfm?id=370049.370413.

  41. Stemm, M., & Katz, R. (1998). Vertical handoffs in wireless overlay networks. ACM Mobile Networks and Applications (MONET), 3, 335–350.

    Article  Google Scholar 

  42. Stewart, R. R., & Xie, Q. (2001). Stream control transmission protocol (SCTP). Addison-Wesley Professional. http://www.worldcat.org/isbn/0201721864.

  43. Tan, P., Wu, Y., & Sun, S. (2008). Link adaptation based on adaptive modulation and coding for multiple-antenna OFDM system. IEEE Journal on Selected Areas in Communications, 26(8), 1599–1606. doi:10.1109/JSAC.2008.081025.

    Article  Google Scholar 

  44. Taniuchi, K., Ohba, Y., Fajardo, V., Das, S., Tauil, M., Cheng, Y. H., et al. (2009). IEEE 802.21: Media independent handover: Features, applicability, and realization. IEEE Communications Magazine, 47(1), 112–120. doi:10.1109/MCOM.2009.4752687.

  45. Vegni, A. M., & Natalizio, E. (2014). A hybrid (n/m)cho soft/hard vertical handover technique for heterogeneous wireless networks. Ad Hoc Networks, 14, 51–70. doi:10.1016/j.adhoc.2013.11.005.

    Article  Google Scholar 

  46. Veronesi, R. (2005). Multiuser scheduling with multi radio access selection. In Wireless communication systems, 2005. 2nd international symposium on (pp. 455–459). doi:10.1109/ISWCS.2005.1547742.

  47. Wang, N. C., Wang, Y. Y., & Chang, S. C. (2007). A fast adaptive congestion control scheme for improving TCP performance during soft vertical handoff. In IEEE wireless communications and networking conference, 2007. (WCNC 2007) (pp. 3641–3646). IEEE, Hong Kong.

  48. Yang, K., Gondal, I., & Qiu, B. (2008). Context aware vertical soft handoff algorithm for heterogeneous wireless networks. In IEEE 68th vehicular technology conference, 2008. (VTC 2008-Fall), Calgary, Canada (pp. 1–5). IEEE.

  49. Yap, K. K., Kobayashi, M., Sherwood, R., Huang, T. Y., Chan, M., Handigol, N., et al. (2010). Openroads: Empowering research in mobile networks. SIGCOMM Computer Communication Review, 40(1), 125–126. doi:10.1145/1672308.1672331.

    Article  Google Scholar 

  50. Yoo, J. W., & Park, K. H. (2011). A cooperative clustering protocol for energy saving of mobile devices with wlan and bluetooth interfaces. IEEE Transactions on Mobile Computing, 10(4), 491–504. doi:10.1109/TMC.2010.161.

    Article  Google Scholar 

  51. Yu, B., Yang, L., Ishii, H., & Mukherjee, S. (2015). Dynamic TDD support in macrocell-assisted small cell architecture. IEEE Journal on Selected Areas in Communications, 33(6), 1201–1213. doi:10.1109/JSAC.2015.2417013.

    Article  Google Scholar 

  52. Zabini, F., Bazzi, A., & Masini, B. (2013). Throughput versus fairness tradeoff analysis. In Communications (ICC), 2013 IEEE international conference on (pp. 5131–5136). doi:10.1109/ICC.2013.6655397.

  53. Zhang, Z., Pazzi, R., & Boukerche, A. (2010). A fast MAC layer handoff protocol for WiFi-based wireless networks. In Local computer networks (LCN), 2010 IEEE 35th conference on (pp. 684–690). doi:10.1109/LCN.2010.5735794.

  54. Zhang, Z., Pazzi, R., Boukerche, A., & Landfeldt, B. (2010). Reducing handoff latency for WiMAX networks using mobility patterns. In Wireless communications and networking conference (WCNC), 2010 IEEE (pp. 1–6). doi:10.1109/WCNC.2010.5506386.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Bazzi.

Additional information

Parts of this work were presented in [8] and [9].

Appendix

Appendix

Assume two RATs, with one of them having smaller coverage. We will use C (from cellular) for the RAT with larger coverage and W (from WiFi) for the other one. Assume one PoA for the RAT with larger coverage and \(N_W\) PoAs for the one with smaller coverage. Assume a number of UEs, forming the set \({\mathcal {U}}\); a subset \({\mathcal {C}}\) of them are only covered by C, while subsets \({\mathcal {W}}_n\), with \(n \in [1,N_W]\), are also under the coverage of PoA n of W. Obviously, \({\mathcal {U}} = {\mathcal {C}} \bigcup {\mathcal {W}}_1 \bigcup \cdots \bigcup {\mathcal {W}}_{N_W}\).

If all UEs were in \({\mathcal {C}}\) the maximum fairness was achieved by using (10). Recalling the definition provided in (15), in such case it was \(T^{(k)} = 1/\eta _{C,0}\), \(\forall k \in {\mathcal {U}}\).

With the availability of the other RAT, UEs in \({\mathcal {W}}_n\) (\(n \in [1,N_W]\)) also benefit from the resources of \(W_n\). To maximize fairness, the resources of \(W_n\) are distributed to UEs in \({\mathcal {W}}_n\) following (10); thus, recalling the definition provided in (17), \(T^{(k)}_{W_n} = 1/\eta _{W,n}\), \(\forall k \in {\mathcal {W}}_n\), \(\forall n \in [1,N_W]\). Then, if we denote with \(K_{C,n}\) the portion of resources of C that is allocated to the generic UE in \({\mathcal {W}}_n\), compared to the one that it would receive if it was only connected to C, and recalling the definitions provided in (15)–(17), we have

$$\begin{aligned} \left\{ \begin{array}{ll} T^{(k)} = \overline{T_C}, &{} k \in {\mathcal {C}}\\ T^{(k)} = K_{C,n} \cdot \overline{T_C} + \frac{1}{\eta _{W,n}}, &{} k \in {\mathcal {W}}_n, \forall n \in [1,N_W] \end{array} \right. \end{aligned}$$
(18)

where

$$\begin{aligned} \overline{T_{C}} \triangleq \frac{1}{\eta _{C,0}+\sum _{n=1}^{N_w} \left( K_{C,n} \eta _{C,n} \right) }. \end{aligned}$$
(19)

The maximum fairness is achieved when all UEs perceive the same throughput, i.e., when \(T^{(k)}\) is the same for all UEs in \({\mathcal {U}}\). From (18) and (19) the constants \(K_{C,n}\) are calculated as

$$\begin{aligned} K_{C,n} = 1 - \frac{1}{\eta _{W,n}} \cdot \frac{\eta _{C,0}+\sum _{y=1}^{N_W} \eta _{C,y}}{\eta _{W,n}+\sum _{y=1}^{N_W} \frac{\eta _{C,y}}{\eta _{W,y}}}, \forall n \in [1,N_W]. \end{aligned}$$
(20)

If any of the constants obtained from (20), for example \(K_{C,z}\), is negative, it means that fairness 1 cannot be achieved neither allocating zero resources of C to UEs in \({\mathcal {W}}_z\). In such case, UEs in \({\mathcal {W}}_z\) are only connected to \(W_z\) and do not perform SRVH. Furthermore, \(\eta _{C,z}\) and \(K_{C,z}\) should be set to 0, and the remaining \(K_{C,n}\) should be recalculated.

By setting \(K^{(k)}_{C} = max \left\{ 0, K_{C,n} \right\}\) for all \(k \in {\mathcal {W}}_n\), varying n, and using \(\eta ^*_{C,y}\) in (20) instead of \(\eta _{C,y}\), as detailed in Sect. 4.4.2, we obtain (12)–(14).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazzi, A., Masini, B.M., Zanella, A. et al. Performance evaluation of softer vertical handovers in multiuser heterogeneous wireless networks. Wireless Netw 23, 159–176 (2017). https://doi.org/10.1007/s11276-015-1140-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1140-8

Keywords

Navigation