Skip to main content
Log in

A novel free space communication system using nonlinear InGaAsP microsystem resonators for enabling power-control toward smart cities

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Nowadays, the smart grid has demonstrated a great ability to make life easier and more comfortable given recent advances. This paper studies the above issue from the perspective of two important and very useful smart grid applications, i.e., the advanced metering infrastructure and demand response using the instrumentality of a set of well-known scheduling algorithms, e.g., best-channel quality indicator, log rule, round robin, and exponential–proportional fairness to validate the performance. To increase the data transmission bandwidth, a new concept of optical wireless communication known as free-space optical communication (FSO) system based on microring resonator (MRR) with the ability to deliver up to gigabit (line of sight) transmission per second is proposed for the two studied smart grid applications. The range between 374.7 and 374.79 THz frequency band was chosen for the generation of 10 successive-carriers with a free spectral range of 8.87 GHz. The ten multi-carriers were produced through drop port of the MRR. The results show up to 10 times bandwidth improvement over the radius as large as 600 m and maintain receive power higher than the minimum threshold (− 20 dBm) at the controller/users, so the overall system is still able to detect the FSO signal and extract the original data without detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Palensky, P., & Dietrich, D. (2011). Demand side management: Demand response, intelligent energy systems, and smart loads. IEEE Transactions on Industrial Informatics,7, 381–388.

    Article  Google Scholar 

  2. Fang, X., Misra, S., Xue, G., & Yang, D. (2012). Smart grid—The new and improved power grid: A survey. IEEE Communications Surveys and Tutorials,14, 944–980.

    Article  Google Scholar 

  3. Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2013). A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys and Tutorials,15, 5–20.

    Article  Google Scholar 

  4. Mohassel, R. R., Fung, A., Mohammadi, F., & Raahemifar, K. (2014). Application of advanced metering infrastructure in smart grids. In 2014 22nd mediterranean conference of control and automation (MED) (pp. 822–828).

  5. DRMS, S. (2012). Demand response management system version 2.0. Siemens USA. Retrieve from http://w3.usa.siemens.com/smartgrid/us/en/demand-response/demand-response-management-system/Pages/Demand_Response_Management_system1019-6647.aspx#content.

  6. Zhou, J., Hu, R. Q., & Qian, Y. (2012). Scalable distributed communication architectures to support advanced metering infrastructure in smart grid. IEEE Transactions on Parallel and Distributed Systems,23, 1632–1642.

    Article  Google Scholar 

  7. Dinh, H. T., Lee, C., Niyato, D., & Wang, P. (2013). A survey of mobile cloud computing: Architecture, applications, and approaches. Wireless Communications and Mobile Computing,13, 1587–1611.

    Article  Google Scholar 

  8. Guan, L., Ke, X., Song, M., & Song, J. (2012). A survey of research on mobile cloud computing. In 2011 10th IEEE/ACIS international conference on computer and information science (pp. 387–392).

  9. Fan, Z., Kulkarni, P., Gormus, S., Efthymiou, C., Kalogridis, G., Sooriyabandara, M., et al. (2013). Smart grid communications: Overview of research challenges, solutions, and standardization activities. IEEE Communications Surveys and Tutorials,15, 21–38.

    Article  Google Scholar 

  10. Saxena, N., & Roy, A. (2015). Exploiting multicast in LTE networks for smart grids demand response. In 2015 IEEE international conference on communications (ICC) (pp. 3155–3160).

  11. Fadel, E., Gungor, V., Nassef, L., Akkari, N., Maik, M. A., Almasri, S., et al. (2015). A survey on wireless sensor networks for smart grid. Computer Communications,71, 22–23.

    Article  Google Scholar 

  12. Colak, I., Sagiroglu, S., Fulli, G., Yesilbudak, M., & Covrig, C.-F. (2016). A survey on the critical issues in smart grid technologies. Renewable and Sustainable Energy Reviews,54, 396–405.

    Article  Google Scholar 

  13. Medina, C., & Navarro, M. Z. A. K. (2015). Led based visible light communication: Technology, applications and challenges—A survey. International Journal of Advances in Engineering and Technology,8, 482.

    Google Scholar 

  14. Matsumoto, M. (2012). Next generation free-space optical system by system design optimization and performance enhancement. In Progress In Electromagnetics Research Symposium Proceedings, KL, MALAYSIA (pp. 27–30).

  15. Safi, H., Sharifi, A., Dabiri, M. T., Ansari, I. S., & Cheng, J. (2019). Adaptive channel coding and power control for practical FSO communication systems under channel estimation error. IEEE Transactions on Vehicular Technology.

  16. Qian, L. P., Wu, Y., Ji, B., Huang, L., & Tsang, D. H. (2019). HybridIoT: Integration of hierarchical multiple access and computation offloading for IoT-based smart cities. IEEE Network,33, 6–13.

    Article  Google Scholar 

  17. Hindia, M. N., Reza, A. W., Noordin, K. A., & Chayon, M. H. R. (2015). A novel LTE scheduling algorithm for green technology in smart grid. PLOS ONE,10(4), e0121901. https://doi.org/10.1371/journal.pone.0121901

    Article  Google Scholar 

  18. Usman, A., & Shami, S. H. (2013). Evolution of communication technologies for smart grid applications. Renewable and Sustainable Energy Reviews,19, 191–199.

    Article  Google Scholar 

  19. Hu, H., Kaleshi, D., Doufexi, A., & Li, L. (2015). Performance analysis of IEEE 802.11af standard based neighbourhood area network for smart grid applications. In 2015 IEEE 81st vehicular technology conference (VTC Spring) (pp. 1–5).

  20. Qamar, F., Hindia, M., Dimyati, K., Noordin, K. A., Majed, M. B., Abd Rahman, T., et al. (2019). Investigation of future 5G-IoT millimeter-wave network performance at 38 GHz for urban microcell outdoor environment. Electronics,8, 495.

    Article  Google Scholar 

  21. Qamar, F., Hindia, M. N., Abbas, T., Dimyati, K. B., & Amiri, I. S. (2019). Investigation of QoS performance evaluation over 5G network for indoor environment at millimeter wave bands. International Journal of Electronics and Telecommunications,65, 95–101.

    Google Scholar 

  22. Hindia, M. N., Qamar, F., Majed, M. B., Rahman, T. A., & Amiri, I. S. (2019). Enabling remote-control for the power sub-stations over LTE-A networks. Telecommunication Systems,70, 37–53.

    Article  Google Scholar 

  23. Qamar, F., Dimyati, K., Hindia, M. N., Noordin, K. A., & Amiri, I. S. (2019). A stochastically geometrical poisson point process approach for the future 5G D2D enabled cooperative cellular network. IEEE Access,7, 60465–60485.

    Article  Google Scholar 

  24. Qamar, F., Hindia, M. N., Dimyati, K., Noordin, K. A., & Amiri, I. S. (2019). Interference management issues for the future 5G network: A review. Telecommunication Systems 1–17.

  25. Tilwari, V., Dimyati, K., Hindia, M., Fattouh, A., & Amiri, I. S. (2019). Mobility, residual energy, and link quality aware multipath routing in MANETs with Q-learning algorithm. Applied Sciences,9, 1582.

    Article  Google Scholar 

  26. Scheme, B. T. (2009). LTE: The evolution of mobile broadband. IEEE Communications magazine, 47(4), 44–51.

    Article  Google Scholar 

  27. Hindia, M. N., Qamar, F., Rahman, T. A., & Amiri, I. S. (2018). A stochastic geometrical approach for full-duplex MIMO relaying model of high-density network. Ad Hoc Networks,74, 34–46.

    Article  Google Scholar 

  28. Maheswar, R., Jayarajan, P., Vigneswaran, D., Udaiyakumar, R., Theepak, C., & Amiri, I. S. (2018). VSMART—A simulation tool for performance analysis of wireless sensor node using queue threshold. In 2018 international conference on communication and signal processing (ICCSP) (pp. 234–237).

  29. Udaiyakumar, R., Joseph, S., Sundararajan, T., Vigneswaran, D., Maheswar, R., & Amiri, I. S. (2018) Self clock-gating scheme for low power basic logic element architecture. Wireless Personal Communications,102(4), 3477–3488.

    Article  Google Scholar 

  30. Udaiyakumar, R., Joseph, S., Sundararajan, T., Vigneswaran, D., Maheswar, R., & Amiri, I. S. (2018) Performance analysis in digital circuits for process corner variations, slew-rate and load capacitance. Wireless Personal Communications, 103(1), 99–115.

    Article  Google Scholar 

  31. Hindia, M. N., Fadoul, M. M., Abdul Rahman, T., & Amiri, I. S. (2018). A stochastic geometry approach to full-duplex MIMO relay network. Wireless Communications and Mobile Computing, 2018, 8342156.

    Article  Google Scholar 

  32. Kouhdaragh, V., Amiri, I. S., & Seyedi, S. (2017). Smart grid load balancing methods to make an efficient heterogeneous network by using the communication cost function. IET Networks,7, 95–102.

    Article  Google Scholar 

  33. Capozzi, F., Piro, G., Grieco, L. A., Boggia, G., & Camarda, P. (2013). Downlink packet scheduling in LTE cellular networks: Key design issues and a survey. IEEE Communications Surveys and Tutorials,15, 678–700.

    Article  Google Scholar 

  34. Rebekka, B., & Malarkodi, B. (2014). Performance evaluation of resource allocation schemes in LTE downlink. In 2014 international conference on electronics and communication systems (ICECS) (pp. 1–4).

  35. Hindia, M. N., Reza, A. W., & Noordin, K. A. (2015). A novel scheduling algorithm based on game theory and multicriteria decision making in LTE network. International Journal of Distributed Sensor Networks. https://doi.org/10.1155/2015/604752

    Article  Google Scholar 

  36. Basukala, R., Ramli, H., & Sandrasegaran, K. (2009). Performance analysis of EXP/PF and M-LWDF in downlink 3GPP LTE system. In First Asian Himalayas international conference on internet, 2009. AH-ICI 2009 (pp. 1–5).

  37. Hajjawi, A., Hindia, M. N., Ismail, M., Noordin, K. A., & Dernaika, M. (2014). Teleoperation scheduling algorithm for smart grid communications in LTE network. In Applied mechanics and materials (pp. 340–345).

  38. Basukala, R., Ramli, H. M., Sandrasegaran, K. (2009). Performance analysis of EXP/PF and M-LWDF in downlink 3GPP LTE system. In First Asian Himalayas international conference on internet, 2009. AH-ICI 2009 (pp. 1–5).

  39. Guha, B., Kyotoku, B. B., & Lipson, M. (2010). CMOS-compatible athermal silicon microring resonators. Optics Express,18, 3487–3493.

    Article  Google Scholar 

  40. Amiri, I. S., Anwar, T., Zakaria, R., & Yupapin, P. (2018). TE-like mode analysis of microsystem InGaAsP/InP semiconductor resonator generating 20 GHz repetition rate pulse trains. Results in Physics,10, 980–986.

    Article  Google Scholar 

  41. Sadegh Amiri, I., Addanki, S., Sampathkumar, A., Dhasarathan, V., & Yupapin, P. (2019). Modified duobinary modulation of optical signals generated by silicon-based microring resonator. Microwave and Optical Technology Letters,61, 1661–1668.

    Article  Google Scholar 

  42. Amiri, I., Bunruangses, M., Chaiwong, K., Udaiyakumar, R., Maheswar, R., Hindia, M., et al. (2019). Dual-wavelength transmission system using double micro-resonator system for EMI healthcare applications. Microsystem Technologies,25, 1185–1193.

    Article  Google Scholar 

  43. Amiri, I., Anwar, T., Vigneswaran, D., & Yupapin, P. (2019). Ultra-short bandwidth optical tweezer generation using GaAs ring resonator system. Results in Physics,12, 1606–1609.

    Article  Google Scholar 

  44. Amiri, I. S., Ariannejad, M. M., Sorger, V. J., & Yupapin, P. (2019). Silicon microring resonator waveguide-based graphene photodetector. Microsystem Technologies,25, 319–328.

    Article  Google Scholar 

  45. Amiri, I. S., Zakaria, R., & Yupapin, P. (2019). Manipulating of nanometer spacing dual-wavelength by controlling the apodized grating depth in microring resonators. Results in Physics,12, 32–37.

    Article  Google Scholar 

  46. Amiri, I., Zakaria, R., Anwar, T., Bahadoran, M., Vigneswaran, D., & Yupapin, P. (2018). Dual wavelength optical duobinary modulation using GaAs–AlGaAs microring resonator. Results in Physics,11, 1087–1093.

    Article  Google Scholar 

  47. Ariannejad, M., Amiri, I., Azzuhri, S., Zakaria, R., & Yupapin, P. (2018). Polarization dependence of SU-8 micro ring resonator. Results in Physics,11, 515–522.

    Article  Google Scholar 

  48. Elfaki, S., Khider, I., Omer, M., Almomen, F., & Abduallah, A. (2011). Evaluation of bit error rate (BER) in WLAN IEEE 802.11 a with radio over fiber (RoF) downlink system. In High capacity optical networks and enabling technologies (HONET), 2011 (pp. 153–158).

  49. Tabatabai, F. (2009). Linearization techniques to suppress optical nonlinearity. Brunel University School of Engineering and Design, Ph.D. theses.

  50. Tsai, W.-S., Lu, H.-H., Li, C.-Y., Lu, T.-C., Lin, H.-H., Chen, B.-R., et al. (2016). A 50-m/320-Gb/s DWDM FSO communication with afocal scheme. IEEE Photonics Journal,8, 1–7.

    Google Scholar 

  51. Yadav, S., & Roy, K. C. (2012). Tradeoff analysis of bit-error-rate (BER) in cognitive radio based on genetic algorithm. International Journal of Computer Science Issues,9, 390–394.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraj Sadegh Amiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, P., Nagaraju, R., Samanta, D. et al. A novel free space communication system using nonlinear InGaAsP microsystem resonators for enabling power-control toward smart cities. Wireless Netw 26, 2317–2328 (2020). https://doi.org/10.1007/s11276-019-02075-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02075-7

Keywords

Navigation