Skip to main content
Log in

Security of internet of things based on cryptographic algorithms: a survey

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Internet of Things (IoT) is a new concept in Information and Communications Technology and its structure is based on smart objects communications. It contributes to controlling, managing, and administrating devices through the Internet. IoT is emerging as a key component of the Internet and a vital infrastructure for millions of interconnected objects. Thus, the security of IoT is highly important. Scalable applications and services are vulnerable to various attacks and information leakage, demanding greater levels of security and privacy. For instance, hacking personal information is a challenge in this regard. The present study is an investigation of symmetric, asymmetric and hybrid encryption algorithms for IoT security. Asymmetric key encryption to ensure secure communication between multiple users and thereby avoiding distributing key on an insecure channel. All algorithms are compared based on security factors. Results indicate that Elliptic Curve Cryptography (ECC) has a better performance than other algorithms in the study. ECC to generate smaller, faster and reliable cryptography keys. Also, ECC decreases the memory requirements and the execution encryption/decryption time. This study helps to understand the importance of several security factors in IoT and advancements in cryptography algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Diène, B., Rodrigues, J. J. P. C., Diallo, O., Ndoye, E. L. H. M., & Korotaev, V. V. (2020). Data management techniques for internet of things. Mechanical Systems and Signal Processing, 138, 106564. https://doi.org/10.1016/j.ymssp.2019.106564.

    Article  Google Scholar 

  2. Alqahtani, F., Al-Makhadmeh, Z., Tolba, A., & Said, O. (2020). TBM: A trust-based monitoring security scheme to improve the service authentication in the internet of things communications. Computer Communications, 150, 216–225. https://doi.org/10.1016/j.comcom.2019.11.030.

    Article  Google Scholar 

  3. Mousavi, S. K., Ghaffari, A., Besharat, S., & Afshari, H. (2020). Improving the security of internet of things using cryptographic algorithms: A case of smart irrigation systems. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02303-5.

    Article  Google Scholar 

  4. Jazebi, S. J., & Ghaffari, A. (2020). RISA: Routing scheme for internet of things using shuffled frog leaping optimization algorithm. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-01708-6.

    Article  Google Scholar 

  5. Seyfollahi, A., & Ghaffari, A. (2020). Reliable data dissemination for the internet of things using Harris hawks optimization. Peer-to-Peer Networking and Applications. https://doi.org/10.1007/s12083-020-00933-2.

    Article  Google Scholar 

  6. HaddadPajouh, H., Dehghantanha, A., Parizi, R. M., Aledhari, M., & Karimipour, H. (2019). A survey on internet of things security: Requirements, challenges, and solutions. Internet of Things. https://doi.org/10.1016/j.iot.2019.100129.

    Article  Google Scholar 

  7. Hou, J., Qu, L., & Shi, W. (2019). A survey on internet of things security from data perspectives. Computer Networks, 148, 295–306. https://doi.org/10.1016/j.comnet.2018.11.026.

    Article  Google Scholar 

  8. Barbosa, G., Endo, P. T., & Sadok, D. (2019). An internet of things security system based on grouping of smart cards managed by field programmable gate array. Computers & Electrical Engineering, 74, 331–348. https://doi.org/10.1016/j.compeleceng.2019.02.013.

    Article  Google Scholar 

  9. Bhoyar, P., Sahare, P., Dhok, S. B., & Deshmukh, R. B. (2019). Communication technologies and security challenges for internet of things: A comprehensive review. AEU—International Journal of Electronics and Communications, 99, 81–99. https://doi.org/10.1016/j.aeue.2018.11.031.

    Article  Google Scholar 

  10. Zeadally, S., Das, A. K., & Sklavos, N. (2019). Cryptographic technologies and protocol standards for internet of things. Internet of Things. https://doi.org/10.1016/j.iot.2019.100075.

    Article  Google Scholar 

  11. Li, W., & Wang, P. (2019). Two-factor authentication in industrial internet-of-things: Attacks, evaluation and new construction. Future Generation Computer Systems, 101, 694–708. https://doi.org/10.1016/j.future.2019.06.020.

    Article  Google Scholar 

  12. Radoglou Grammatikis, P. I., Sarigiannidis, P. G., & Moscholios, I. D. (2019). Securing the internet of things: Challenges, threats and solutions. Internet of Things, 5, 41–70. https://doi.org/10.1016/j.iot.2018.11.003.

    Article  Google Scholar 

  13. Kouicem, D. E., Bouabdallah, A., & Lakhlef, H. (2018). Internet of things security: A top-down survey. Computer Networks, 141, 199–221. https://doi.org/10.1016/j.comnet.2018.03.012.

    Article  Google Scholar 

  14. Beheshtiasl, A., & Ghaffari, A. (2019). Secure and trust-aware routing scheme in wireless sensor networks. Wireless Personal Communications, 107(4), 1799–1814. https://doi.org/10.1007/s11277-019-06357-3.

    Article  Google Scholar 

  15. Mohammadi, P., & Ghaffari, A. (2019). Defending against flooding attacks in mobile ad-hoc networks based on statistical analysis. Wireless Personal Communications, 106(2), 365–376. https://doi.org/10.1007/s11277-019-06166-8.

    Article  Google Scholar 

  16. Seyfollahi, A., & Ghaffari, A. (2020). A lightweight load balancing and route minimizing solution for routing protocol for low-power and lossy networks. Computer Networks, 179, 107368. https://doi.org/10.1016/j.comnet.2020.107368.

    Article  Google Scholar 

  17. Gheisari, M., Wang, G., & Chen, S. (2020). An edge computing-enhanced internet of things framework for privacy-preserving in smart city. Computers & Electrical Engineering, 81, 106504. https://doi.org/10.1016/j.compeleceng.2019.106504.

    Article  Google Scholar 

  18. Perera, C., Barhamgi, M., Bandara, A. K., Ajmal, M., Price, B., & Nuseibeh, B. (2020). Designing privacy-aware internet of things applications. Information Sciences, 512, 238–257. https://doi.org/10.1016/j.ins.2019.09.061.

    Article  Google Scholar 

  19. Beltrán, M. (2018). Identifying, authenticating and authorizing smart objects and end users to cloud services in internet of things. Computers & Security, 77, 595–611. https://doi.org/10.1016/j.cose.2018.05.011.

    Article  Google Scholar 

  20. Ray, P. P. (2018). A survey on internet of things architectures. Journal of King Saud University—Computer and Information Sciences, 30(3), 291–319. https://doi.org/10.1016/j.jksuci.2016.10.003.

    Article  Google Scholar 

  21. Alaba, F. A., Othman, M., Hashem, I. A. T., & Alotaibi, F. (2017). Internet of things security: A survey. Journal of Network and Computer Applications, 88, 10–28. https://doi.org/10.1016/j.jnca.2017.04.002.

    Article  Google Scholar 

  22. Bovenzi, G., Ciuonzo, D., Persico, V., Pescapè, A., & Rossi, P. S. (2019). IoT-enabled distributed detection of a nuclear radioactive source via generalized score tests. In Advances in signal processing and intelligent recognition systems. Singapore: Springer Singapore.

  23. Nesa, N., & Banerjee, I. (2017). IoT-based sensor data fusion for occupancy sensing using Dempster-Shafer evidence theory for smart buildings. IEEE Internet of Things Journal, 4(5), 1563–1570. https://doi.org/10.1109/JIOT.2017.2723424.

    Article  Google Scholar 

  24. Ciuonzo, D., Gelli, G., Pescapé, A., & Verde, F. (2019). Decision fusion rules in ambient backscatter wireless sensor networks. In 2019 IEEE 30th annual international symposium on personal, indoor and mobile radio communications (PIMRC).

  25. Azari, L., & Ghaffari, A. (2015). Proposing a novel method based on network-coding for optimizing error recovery in wireless sensor networks. Indian Journal of Science and Technology, 8(9), 859–867.

    Article  Google Scholar 

  26. Ghaffari, A. (2014). Designing a wireless sensor network for ocean status notification system. Indian Journal of Science and Technology, 7(6), 809.

    Article  Google Scholar 

  27. Ghaffari, A., & Rahmani, A. (2008). Fault tolerant model for data dissemination in wireless sensor networks. In 2008 international symposium on information technology. IEEE.

  28. Ghaffari, A., Rahmani, A., & Khademzadeh, A. (2011). Energy-efficient and QoS-aware geographic routing protocol for wireless sensor networks. IEICE Electronics Express, 8(8), 582–588.

    Article  Google Scholar 

  29. Ghaffari, A., & Takanloo, V. A. (2011). QoS-based routing protocol with load balancing for wireless multimedia sensor networks using genetic algorithm. World Applied Sciences Journal, 15(12), 1659–1666.

    Google Scholar 

  30. Althunibat, S., Sucasas, V., & Rodriguez, J. (2017). A physical-layer security scheme by phase-based adaptive modulation. IEEE Transactions on Vehicular Technology, 66(11), 9931–9942. https://doi.org/10.1109/TVT.2017.2737885.

    Article  Google Scholar 

  31. Althunibat, S., Sucasas, V., Mantas, G., & Rodriguez, J. (2018). Physical-layer entity authentication scheme for mobile MIMO systems. IET Communications, 12(6), 712–718. https://doi.org/10.1049/iet-com.2017.0518.

    Article  Google Scholar 

  32. Alhasanat, M., Althunibat, S., Darabkh, K. A., Alhasanat, A., & Alsafasfeh, M. (2020). A physical-layer key distribution mechanism for IoT networks. Mobile Networks and Applications, 25(1), 173–178. https://doi.org/10.1007/s11036-019-01219-5.

    Article  Google Scholar 

  33. Fatima, I., Malik, S. U. R., Anjum, A., & Ahmad, N. (2020). Cyber physical systems and IoT: Architectural practices. Interoperability, and Transformation, IT Professional, 22(3), 46–54. https://doi.org/10.1109/MITP.2019.2912604.

    Article  Google Scholar 

  34. Rauscher, J., & Bauer, B. (2018). Safety and security architecture analyses framework for the internet of things of medical devices. In 2018 IEEE 20th international conference on e-health networking, applications and services (Healthcom).

  35. Celia, L., & Cungang, Y. (2018). (WIP) Authenticated key management protocols for internet of things. IEEE International Congress on Internet of Things (ICIOT) 126–129.

  36. Rajashree, S., Shah, P. G., & Murali, S. (2018). Security model for internet of things end devices. In 2018 IEEE international conference on internet of things (iThings) and IEEE green computing and communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data (SmartData).

  37. Deshmukh, S., & Sonavane, S. S. (2017). Security protocols for internet of things: A survey. In 2017 International conference on Nextgen electronic technologies: Silicon to software (ICNETS2).

  38. Lu, X., Pan, Z., & Xian, H. (2019). An integrity verification scheme of cloud storage for internet-of-things mobile terminal devices. Computers & Security. (in press, corrected proof).

  39. Chahal, R. K., Kumar, N., & Batra, S. (2020). Trust management in social internet of things: A taxonomy, open issues, and challenges. Computer Communications, 150, 13–46. https://doi.org/10.1016/j.comcom.2019.10.034.

    Article  Google Scholar 

  40. Zhang, X., & Hang, H. (2010). An efficient conversion scheme for enhancing security of Diffie-Hellman-based encryption. Wuhan University Journal of Natural Sciences, 15(5), 415–421. https://doi.org/10.1007/s11859-010-0676-9.

    Article  MathSciNet  Google Scholar 

  41. Rivest, R., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2), 120–126.

    Article  MathSciNet  Google Scholar 

  42. Kandhoul, N., & Dhurandher, S. K. (2019). An asymmetric RSA-based security approach for opportunistic IoT. In 2nd international conference on wireless intelligent and distributed environment for communication. Cham: Springer International Publishing.

  43. Jin, B. W., Park, J. O., & Mun, H. J. (2019). A design of secure communication protocol using RLWE based homomorphic encryption in IoT convergence cloud environment. Wireless Personal Communications, 105, 599–618.

    Article  Google Scholar 

  44. Miller, V. S. (1986). Use of elliptic curves in cryptography. In Advances in cryptology—CRYPTO ’85 proceedings. Berlin, Heidelberg: Springer.

  45. Harbi, Y., Aliouat, Z., Harous, S., & Bentaleb, A. (2019). Secure data transmission scheme based on elliptic curve cryptography for internet of things. In Modelling and implementation of complex systems. Cham: Springer International Publishing.

  46. Kudithi, T., & Sakthivel, R. (2019). High-performance ECC processor architecture design for IoT security applications. The Journal of Supercomputing, 75(1), 447–474. https://doi.org/10.1007/s11227-018-02740-2.

    Article  Google Scholar 

  47. Shah, D. P., & Shah, P. G. (2018). Revisting of elliptical curve cryptography for securing internet of things (IOT). IEEE, 1–3.

  48. Sharma, C., & Sunanda. (2018). Performance analysis of ECC and RSA for securing CoAP-based remote health monitoring system. In Ambient communications and computer systems. Singapore: Springer Singapore.

  49. Dhillon, P. K., & Kalra, S. (2018). Multi-factor user authentication scheme for IoT-based healthcare services. Journal of Reliable Intelligent Environments, 4(3), 141–160. https://doi.org/10.1007/s40860-018-0062-5.

    Article  Google Scholar 

  50. Yang, X., Yi, X., Zeng, Y., Khalil, I., Huang, X., & Nepal, S. (2018). An improved lightweight RFID authentication protocol for internet of things. Web Information Systems Engineering—WISE, 111–126.

  51. Sasirekha, S., Swamynathan, S., & Suganya, S. (2018). An ECC-based algorithm to handle secure communication between heterogeneous IoT devices. In Advances in electronics, communication and computing. Singapore: Springer Singapore.

  52. Saeed, M. E. S., Liu, Q.-Y., Tian, G., Gao, B., & Li, F. (2019). AKAIoTs: Authenticated key agreement for internet of things. Wireless Networks, 25(6), 3081–3101. https://doi.org/10.1007/s11276-018-1704-5.

    Article  Google Scholar 

  53. Kumar, K. S., & Sukumar, R. (2019). Achieving energy efficiency using novel scalar multiplication based ECC for android devices in internet of things environments. Cluster Computing, 22(5), 12021–12028. https://doi.org/10.1007/s10586-017-1542-8.

    Article  Google Scholar 

  54. Diro, A. A., Chilamkurti, N., & Veeraraghavan, P. (2017). Elliptic curve based cybersecurity schemes for publish-subscribe internet of things. In Quality, reliability, security and robustness in heterogeneous networks. Cham: Springer International Publishing.

  55. Hasan, H., Salah, T., Shehada, D., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M., & Al-Hammadi, Y. (2017). Secure lightweight ECC-based protocol for multi-agent IoT systems. In 2017 IEEE 13th international conference on wireless and mobile computing, networking and communications (WiMob).

  56. Shruti, P., & Chandraleka, R. (2017). Elliptic curve cryptography security in the context of internet of things. International Journal of Scientific & Engineering Research, 8(5), 90–94.

    Google Scholar 

  57. Nayak, B. (2017). A secure ID-based signcryption scheme based on elliptic curve cryptography. International Journal of Computational Intelligence Studies, 6(2), 150–156.

    Article  Google Scholar 

  58. Kumari, S., Karuppiah, M., Das, A. K., Li, X., Wu, F., & Kumar, N. (2018). A secure authentication scheme based on elliptic curve cryptography for IoT and cloud servers. The Journal of Supercomputing, 74(12), 6428–6453. https://doi.org/10.1007/s11227-017-2048-0.

    Article  Google Scholar 

  59. Tewari, A., & Gupta, B. B. (2017). A lightweight mutual authentication protocol based on elliptic curve cryptography for IoT devices. International Journal of Advanced Intelligence Paradigms (IJAIP), 9(2).

  60. Dhillon, P. K., & Kalra, S. (2016). Elliptic curve cryptography for real time embedded systems in IoT networks. In 2016 5th international conference on wireless networks and embedded systems (WECON).

  61. Shen, H., Shen, J., Khan, M. K., & Lee, J.-H. (2017). Efficient RFID authentication using elliptic curve cryptography for the internet of things. Wireless Personal Communications, 96(4), 5253–5266. https://doi.org/10.1007/s11277-016-3739-1.

    Article  Google Scholar 

  62. Hernández-Ramos, J. L., Jara, A. J., Marín, L., & Gómez, A. F. S. (2016). DCapBAC: Embedding authorization logic into smart things through ECC optimizations. International Journal of Computer Mathematics, 93(2), 345–366. https://doi.org/10.1080/00207160.2014.915316.

    Article  MATH  Google Scholar 

  63. Das, M. L. (2013). Strong security and privacy of RFID system for internet of things infrastructure. In International conference on security, privacy, and applied cryptography engineering, SPACE 2013: Security, privacy, and applied cryptography engineering (pp. 56–69).

  64. Marin, L., Jara, A., & Gomez, A. S. (2013). Shifting primes: Optimizing elliptic curve cryptography for 16-bit devices without hardware multiplier. Mathematical and Computer Modelling, 58(5), 1155–1174. https://doi.org/10.1016/j.mcm.2013.02.008.

    Article  Google Scholar 

  65. Salas, M. (2013). A secure framework for OTA smart device ecosystems using ECC encryption and biometrics. In Advances in security of information and communication networks. Berlin, Heidelberg: Springer.

  66. Marin, L., Jara, A. J., & Skarmeta, A. F. G. (2011). Shifting primes: Extension of pseudo-mersenne primes to optimize ECC for MSP430-based future internet of things devices. In Availability, reliability and security for business, enterprise and health information systems. Berlin, Heidelberg: Springer.

  67. Bruni, A., Sahl Jørgensen, T., Grønbech Petersen, T., & Schürmann, C. (2018). Formal verification of ephemeral Diffie-Hellman over COSE (EDHOC). In Security standardisation research. Cham: Springer International Publishing.

  68. Shah, R. H., & Salapurkar, D. P. (2017). A multifactor authentication system using secret splitting in the perspective of cloud of things. In 2017 international conference on emerging trends & innovation in ICT (ICEI).

  69. Pérez, S., Rotondi, D., Pedone, D., Straniero, L., Núñez, M. J., & Gigante, F. (2018). Towards the CP-ABE application for privacy-preserving secure data sharing in IoT contexts. In Innovative mobile and internet services in ubiquitous computing. Cham: Springer International Publishing.

  70. Zhang, Y., Deng, R. H., Han, G., & Zheng, D. (2018). Secure smart health with privacy-aware aggregate authentication and access control in internet of things. Journal of Network and Computer Applications, 123, 89–100. https://doi.org/10.1016/j.jnca.2018.09.005.

    Article  Google Scholar 

  71. Zhang, Y., Wu, A., Zhang, T., & Zheng, D. (2019). Secure and flexible keyword search over encrypted data with outsourced decryption in Internet of things. Annals of Telecommunications, 74(7), 413–421. https://doi.org/10.1007/s12243-018-0694-8.

    Article  Google Scholar 

  72. Pace, G. J., Picazo-Sanchez, P., & Schneider, G. (2018). Migrating monitors + ABE: A suitable combination for secure IoT? In Leveraging applications of formal methods, verification and validation. Industrial practice. Cham: Springer International Publishing.

  73. Liu, L., & Ye, J. (2018). Identity-based re-encryption scheme with lightweight re-encryption key generation. Journal of Discrete Mathematical Sciences and Cryptography, 21(1), 41–57. https://doi.org/10.1080/09720529.2016.1160513.

    Article  MathSciNet  Google Scholar 

  74. Gopinath, M. P., Tamizharasi, G. S., Kavisankar, L., Sathyaraj, R., Karthi, S., Aarthy, S. L., & Balamurugan, B. (2019). A secure cloud-based solution for real-time monitoring and management of Internet of underwater things (IOUT). Neural Computing and Applications, 31(1), 293–308. https://doi.org/10.1007/s00521-018-3774-9.

    Article  Google Scholar 

  75. Choi, J., In, Y., Park, C., Seok, S., Seo, H., & Kim, H. (2018). Secure IoT framework and 2D architecture for end-to-end security. The Journal of Supercomputing, 74(8), 3521–3535. https://doi.org/10.1007/s11227-016-1684-0.

    Article  Google Scholar 

  76. Lee, J., Oh, S., & Jang, J. W. (2015). A work in progress: Context based encryption scheme for internet of things. Procedia Computer Science, 56, 271–275. https://doi.org/10.1016/j.procs.2015.07.208.

    Article  Google Scholar 

  77. Zhang, M. (2014). New model and construction of ABE: Achieving key resilient-leakage and attribute direct-revocation. In Information security and privacy. Cham: Springer International Publishing.

  78. Su, J., Cao, D., Zhao, B., Wang, X., & You, I. (2014). ePASS: An expressive attribute-based signature scheme with privacy and an unforgeability guarantee for the internet of things. Future Generation Computer Systems, 33, 11–18. https://doi.org/10.1016/j.future.2013.10.016.

    Article  Google Scholar 

  79. Chandi, P., Sharma, A., Chhabra, A., & Gupta, P. (2019). A DES-based mechanism to secure personal data on the internet of things. In ICCCE 2018. Singapore: Springer Singapore.

  80. Cruz-Duarte, S., Sastoque-Mahecha, M., Gaona-García, E., & Gaona-García, P. (2019). Security scheme for IoT environments in smart grids. In Information systems and technologies to support learning. Cham: Springer International Publishing.

  81. Vidyashree, L., & Suresha, B. M. (2019). Methodology to secure agricultural data in IoT. In Emerging technologies in data mining and information security. Singapore: Springer Singapore.

  82. Kiran Kumar, V. G., & Shantharama Rai, C. (2019). Implementation and analysis of cryptographic ciphers in FPGA. In Emerging technologies in data mining and information security. Singapore: Springer Singapore.

  83. Jan, M. A., Khan, F., Alam, M., & Usman, M. (2019). A payload-based mutual authentication scheme for internet of things. Future Generation Computer Systems, 92, 1028–1039. https://doi.org/10.1016/j.future.2017.08.035.

    Article  Google Scholar 

  84. Wang, Y., Chen, C., & Jiang, Q. (2019). Security algorithm of internet of things based on ZigBee protocol. Cluster Computing, 22(6), 14759–14766. https://doi.org/10.1007/s10586-018-2388-4.

    Article  Google Scholar 

  85. Alassaf, N., Gutub, A., Parah, S. A., & Ghamdi, M. A. (2019). Enhancing speed of SIMON: A light-weight-cryptographic algorithm for IoT applications. Multimedia Tools and Applications, 78(23), 32633–32657. https://doi.org/10.1007/s11042-018-6801-z.

    Article  Google Scholar 

  86. Hu, C., Luo, J., Pu, Y., Yu, J., Zhao, R., Huang, H., & Xiang, T. (2018). An efficient privacy-preserving data aggregation scheme for IoT. In Wireless algorithms, systems, and applications. Cham: Springer International Publishing.

  87. Tsai, K. L., Huang, Y. L., Leu, F. Y., You, I. I., Huang, Y. L., & Tsai, C. H. (2018). AES-128 based secure low power communication for LoRaWAN IoT environments, security and trusted computing for industrial internet of things. IEEE, 45325–45334.

  88. Newe, T., Rao, M., Toal, D., Dooly, G., Omerdic, E., & Mathur, A., et al. (2017). Efficient and high speed FPGA bump in the wire implementation for data integrity and confidentiality services in the IoT. In O. A. Postolache (Ed.), Sensors for everyday life: Healthcare settings (pp. 259–285). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  89. Bohan, Z., Xu, W., Kaili, Z., & Xueyuan, Z. (2013). Encryption node design in internet of things based on fingerprint features and CC2530. In 2013 IEEE international conference on green computing and communications and IEEE internet of things and IEEE cyber, physical and social computing.

  90. Schneier, B. (1993). Description of a new variable-length key, 64-bit block cipher (blowfish), fast software encryption, Cambridge security workshop proceedings. Springer (pp. 191–204).

  91. Corpuz, R. R., Gerardo, B. D., & Medina, R. P. (2018). Using a modified approach of blowfish algorithm for data security in cloud computing, ICIT 2018, Hong Kong (pp. 157–162).

  92. Suchdeo, M., Mawane, D., Negandhi, M., Sarkar, S., & Prajapat, S. (2018). Towards performance analysis of symmetric key algorithm on n-core systems: An IOT perspective. International Journal of Computer Sciences and Engineering, 6(6), 1127–1129.

    Article  Google Scholar 

  93. Deshpande, K., & Singh, P. (2018). Performance evaluation of cryptographic ciphers on IoT devices, international conference on recent trends in computational engineering and technologies (ICTRCET'18) (pp. 1–6).

  94. Suresh, M., & Neema, M. (2016). Hardware implementation of blowfish algorithm for the secure data transmission in internet of things. Procedia Technology, 25, 248–255. https://doi.org/10.1016/j.protcy.2016.08.104.

    Article  Google Scholar 

  95. Prasetyo, K. N., Purwanto, Y., & Darlis, D. (2014). An implementation of data encryption for internet of things using blowfish algorithm on FPGA. In 2014 2nd international conference on information and communication technology (ICoICT).

  96. Xie, C., & Deng, S.-T. (2017). Research and application of security and privacy in industrial internet of things based on fingerprint encryption. In Industrial IoT technologies and applications. Cham: Springer International Publishing.

  97. Elhoseny, M., Ramírez-González, G., Abu-Elnasr, O. M., Shawkat, S. A., Arunkumar, N., & Farouk, A. (2018). Secure medical data transmission model for IoT-based healthcare systems. IEEE Access, 6, 20596–20608. https://doi.org/10.1109/ACCESS.2018.2817615.

    Article  Google Scholar 

  98. Zhang, Y., He, D., & Choo, K. K. R. (2018). BaDS: Blockchain-based architecture for data sharing with ABS and CP-ABE in IoT. Wireless Communications and Mobile Computing, 1–9.

  99. Sankaralingam, S. A., Usha, G., & Acharya, A. (2018). A hybrid cryptographic algorithm based on AES and SHA1 in RFID. International Journal of Pure and Applied Mathematics, 118(11), 835–840.

    Google Scholar 

  100. Schmitt, C., Kothmayr, T., Hu, W., & Stiller, B. (2017). Two-way authentication for the internet-of-things. In D. P. Acharjya & M. K. Geetha (Eds.), Internet of things: Novel advances and envisioned applications (pp. 27–56). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  101. Odelu, V., Das, A. K., Khan, M. K., Choo, K. R., & Jo, M. (2017). Expressive CP-ABE scheme for mobile devices in IoT satisfying constant-size keys and ciphertexts. IEEE Access, 5, 3273–3283. https://doi.org/10.1109/ACCESS.2017.2669940.

    Article  Google Scholar 

  102. Darwish, A., El-Gendy, M. M., Hassanien, A. E., & New, A., et al. (2017). Hybrid cryptosystem for internet of things applications. In A. E. Hassanien (Ed.), Multimedia forensics and security: Foundations, innovations, and applications (pp. 365–380). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  103. Mohammed, A. F., & Qyser, A. A. M. (2020). A hybrid approach for secure iris-based authentication in IoT. In ICICCT 2019—system reliability, quality control, safety, maintenance and management. Singapore: Springer Singapore.

  104. Alamr, A. A., Kausar, F., Kim, J., & Seo, C. (2018). A secure ECC-based RFID mutual authentication protocol for internet of things. The Journal of Supercomputing, 74(9), 4281–4294. https://doi.org/10.1007/s11227-016-1861-1.

    Article  Google Scholar 

  105. Qiaohong, Z., Xiaoyu, Y., & Xie, W. (2015). Data encryption for remote monitoring system based on internet of things in mobile mode. In Human centered computing. Cham: Springer International Publishing.

  106. Zhao, X., Qi, L., Li, Y., Chen, J., & Shen, H. (2015). Data encryption and transmission technology for cotton of IoT security. In LISS 2014. Berlin, Heidelberg: Springer.

  107. Xin, M. (2015). A mixed encryption algorithm used in internet of things security transmission system. In 2015 international conference on cyber-enabled distributed computing and knowledge discovery.

  108. Yao, X., Chen, Z., & Tian, Y. (2015). A lightweight attribute-based encryption scheme for the internet of things. Future Generation Computer Systems, 49, 104–112. https://doi.org/10.1016/j.future.2014.10.010.

    Article  Google Scholar 

  109. Guo, R., Wen, Q., Shi, H., Jin, Z., & Zhang, H. (2014). Certificateless public key encryption scheme with hybrid problems and its application to internet of things. Hindawi Publishing Corporation, Mathematical Problems in Engineering (pp. 1–9).

  110. Weber, R. H., & Studer, E. (2016). Cybersecurity in the internet of things: Legal aspects. Computer Law and Security Review, 32(5), 715–728. https://doi.org/10.1016/j.clsr.2016.07.002.

    Article  Google Scholar 

  111. Han, G., Zhou, L., Wang, H., Zhang, W., & Chan, S. (2018). A source location protection protocol based on dynamic routing in WSNs for the social internet of things. Future Generation Computer Systems, 82, 689–697. https://doi.org/10.1016/j.future.2017.08.044.

    Article  Google Scholar 

  112. Li, X., Niu, J., Kumari, S., Wu, F., Sangaiah, A. K., & Choo, K.-K.R. (2018). A three-factor anonymous authentication scheme for wireless sensor networks in internet of things environments. Journal of Network and Computer Applications, 103, 194–204. https://doi.org/10.1016/j.jnca.2017.07.001.

    Article  Google Scholar 

  113. Tewari, A., & Gupta, B. B. (2018). Security, privacy and trust of different layers in internet-of-things (IoTs) framework. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2018.04.027.

    Article  Google Scholar 

  114. Alavi, A. H., Jiao, P., Buttlar, W. G., & Lajnef, N. (2018). Internet of things-enabled smart cities: State-of-the-art and future trends. Measurement, 129, 589–606. https://doi.org/10.1016/j.measurement.2018.07.067.

    Article  Google Scholar 

  115. Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Renzo, M. D. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine, 53(4), 20–27. https://doi.org/10.1109/MCOM.2015.7081071.

    Article  Google Scholar 

  116. Zou, Y., Zhu, J., Wang, X., & Hanzo, L. (2016). A survey on wireless security: Technical challenges, recent advances, and future trends. Proceedings of the IEEE, 104(9), 1727–1765. https://doi.org/10.1109/JPROC.2016.2558521.

    Article  Google Scholar 

  117. Pandey, A., & Yadav, S. (2018). Physical layer security in cooperative AF relaying networks with direct links over mixed Rayleigh and double-Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 67(11), 10615–10630. https://doi.org/10.1109/TVT.2018.2866590.

    Article  Google Scholar 

  118. Pandey, A., & Yadav, S. (2020). Secrecy analysis of cooperative vehicular relaying networks over double-Rayleigh fading channels. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07500-1.

    Article  Google Scholar 

  119. Chu, S. (2019). Secrecy analysis of modify-and-forward relaying with relay selection. IEEE Transactions on Vehicular Technology, 68(2), 1796–1809. https://doi.org/10.1109/TVT.2018.2885807.

    Article  Google Scholar 

  120. Zhang, C., Jia, F., Zhang, Z., Ge, J., & Gong, F. (2020). Physical layer security designs for 5G NOMA systems with a stronger near-end internal eavesdropper. IEEE Transactions on Vehicular Technology, 1–1. https://doi.org/10.1109/TVT.2020.3018234.

  121. Osorio, D. P. M., Olivo, E. E. B., Alves, H., & Latva-Aho, M. (2020). Safeguarding MTC at the physical layer: Potentials and challenges. IEEE Access, 8, 101437–101447. https://doi.org/10.1109/ACCESS.2020.2996383.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ghaffari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.K., Ghaffari, A., Besharat, S. et al. Security of internet of things based on cryptographic algorithms: a survey. Wireless Netw 27, 1515–1555 (2021). https://doi.org/10.1007/s11276-020-02535-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02535-5

Keywords

Navigation