Skip to main content
Log in

Image contour detection based on improved level set in complex environment

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

An improved image segmentation model was established to achieve accurate detection of target contours under high noise, low resolution, and uneven illumination environments. The new model is based on the variational level set algorithm, which improves the C–V (Chan and Vese) model and GAC (Geodesic Active Contour) model, fuses the contour and area models to segment the image information, that is, the edge information and region information of the image are fused into the same "energy" functional. According to the geometric characteristics of the curve, GAC model can effectively avoid re parameterization and light insensitivity in the evolution process, and CV model can effectively distinguish the fuzzy boundary of the image by maximizing the gray difference between the target and the background, it has strong anti-noise performance. By solving the steady-state solution of the partial differential equation, the optimal solution of the energy model is solved. New method can improve the calculation accuracy, topological structure adaptability, anti-noise ability, and reduce the light sensitivity effectively. Experiment shows that the new model has good robustness, high real-time performance, and it can effectively improve detection accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig.7

Similar content being viewed by others

References

  1. Zhou, S., Kan, P., Silbernagel, J., & Jin, J. (2020). Application of image segmentation in surface water extraction of freshwater lakes using radar data. ISPRS International Journal of Geo-Information, 9(7), 424.

    Article  Google Scholar 

  2. Zhang, Y., Chen, P., Hong, H., Huang, Z., & Zhou, C. (2020). The research of image segmentation methods for interested area extraction in image matching guidance. Automatic Target Recognition and Navigation.

  3. Sakaridis, C., Dai, D., & Van Gool, L. (2020). Map-guided curriculum domain adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation.IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2020.3045882

  4. Islam, M. M., & Kashem, M. A .(2021). Parametric active contour model-based tumor area segmentation from brain mri images using minimum initial points. Iran Journal of Computer Science, 4,125–132.

    Article  Google Scholar 

  5. Kowdiki, M., & Khaparde, A. (2021). Automatic hand gesture recognition using hybrid meta-heuristic-based feature selection and classification with dynamic time warping. Computer Science Review, 39, 100320.

    Article  Google Scholar 

  6. Jiang, D., Huo, L., & Li, Y. (2018). Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE, 13(5), 1–23.

    Google Scholar 

  7. Jiang, D., Zhang, P., & Lv, Z. (2016). Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things Journal, 3(6), 1437–1447.

    Article  Google Scholar 

  8. Yu, S., Lu, Y., & Molloy, D. (2019). A dynamic-shape-prior guided snake model with application in visually tracking dense cell populations. IEEE Transactions on Image Processing, 28(3), 1513–1527.

    Article  MathSciNet  Google Scholar 

  9. Jiang, D., Li, W., & Lv, H. (2017). An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing, 220(12), 160–169.

    Article  Google Scholar 

  10. Ren, H., Su, Z. B., Lv, C. H., & Zou, F. J. (2015). An improved algorithm for active contour extraction based on greedy snake. In IEEE/ACIS 14th International Conference on Computer and Information Science (ICIS). https://doi.org/10.1109/ICIS.2015.

  11. Celestine, A., & Peter, J. D. (2020). Investigations on adaptive connectivity and shape prior based fuzzy graph-cut colour image segmentation. Expert Systems. https://doi.org/10.1111/exsy.12554.

  12. Feng, C., Yang, J., Lou, C., Li, W., & Zhao, D. (2020). A global inhomogeneous intensity clustering- (ginc-) based active contour model for image segmentation and bias correction. Computational and Mathematical Methods in Medicine., 2020(5), 1–18.

    Google Scholar 

  13. Wang, Y., Jiang, D., Huo, L., & Zhao, Y. (2021). A new traffic prediction algorithm to software defined networking. Mobile Networks and Applications. online available, 26, 716–725.

    Article  Google Scholar 

  14. Jiang, D., Wang, Y., Lv, Z., Wang, W., & Wang, H. (2020). An energy-efficient networking ap-proach in cloud services for IIoT networks. IEEE Journal on Selected Areas in Commu-nications., 38(5), 928–941.

    Article  Google Scholar 

  15. Huo, L., Jiang, D., Lv, Z., & Singh, S. (2020). An intelligent optimization‐based traffic information acquirement approach to software‐defined networking. Computational Intelligence36(1), 151–171.

    Article  Google Scholar 

  16. Mohana, P. R., & Venkatesan, P. (2021). An efficient image segmentation and classification of lung lesions in pet and ct image fusion using dtwt incorporated svm. Microprocessors and Microsystems. https://doi.org/10.1016/j.micpro.2021.103958.

  17. Mariano, R., Oscar, D., Washington, M., & Alonso, R. M. (2018). Spatial sampling for image segmentation. Computer Journal, (3), 313–324.

  18. Jiang, D., Wang, Y., Lv, Z., Qi, S., & Singh, S. (2020). Big data analysis based network behavior insight of cellular networks for industry 4.0 applications. IEEE Transactions on Industrial Informatics, 16(2), 1310–1320.

    Article  Google Scholar 

  19. Huo, L., Jiang, D., Qi, S., Song, H., & Miao, L. (2021). An AI-based adaptive cognitive modeling and measurement method of network traffic for EIS. Mobile Networks and Applications, 26(7), 575–585.

    Article  Google Scholar 

  20. Avalos, G., Geredeli, P. G .(2020). Exponential stability of a non-dissipative, compressible flow–structure pde model. Journal of Evolution Equations, 20(1), 1–38. https://doi.org/10.1007/s00028-019-00513-9

    Article  MathSciNet  MATH  Google Scholar 

  21. Xia, M., Greenman, C. D., & Chou, T. (2020). Pde models of adder mechanisms in cellular proliferation. SIAM Journal on Applied Mathematics., 80(3), 1307–1335.

    Article  MathSciNet  Google Scholar 

  22. Kolářová, E., & Brančík, L. (2019). Noise influenced transmission line model via partial stochastic differential equations. International Conference on Telecommunications and Signal Processing (TSP). https://doi.org/10.1109/TSP.2019.8769101.

  23. Pels, A., Gyselinck, J., Sabariego, R. V., & Schops, S. (2017). Solving nonlinear circuits with pulsed excitation by multirate partial differential equations. IEEE Transactions on Magnetics., 54(3), 1–4.

    Article  Google Scholar 

  24. Reska, D., & Kretowski, M. (2021). Gpu-accelerated image segmentation based on level sets and multiple texture features. Multimedia Tools and Applications, 80(1), 1–23.

    Article  Google Scholar 

  25. Ozturk, N., & Ozturk, S. (2021). A new effective hybrid segmentation method based on C–V and LGDF. Signal Image and Video Processing. https://doi.org/10.1007/s11760-021-01862-0

  26. Jiang, D., Huo, L., & Song, H. (2020). Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Transactions on Network Science and Engineering., 7(1), 80–90.

    Article  MathSciNet  Google Scholar 

  27. Qi, S., Jiang, D., & Huo, L. (2021). A prediction approach to end-to-end traffic in space information networks. Mobile Networks and Applications, 26, 726–735.

    Article  Google Scholar 

  28. Jiang, D., Wang, W., Shi, L., & Song, H. (2020). A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Transactions on Network Science and Engineering, 7(1), 507–519.

    Article  MathSciNet  Google Scholar 

  29. Jiang, D., Huo, L., Lv, Z., Song, H., & Qin, W. (2018). A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Transactions on Intel-ligent Transportation Systems., 19(10), 3305–3319.

    Article  Google Scholar 

  30. Wang, F., Jiang, D., & Qi, S. (2019). An adaptive routing algorithm for integrated information networks. China Communications., 7(1), 196–207.

    Google Scholar 

  31. Liu, G., Dong, Y., Deng, M., & Liu, Y. (2020). Magnetostatic active contour model with classification method of sparse representation. Journal of Electrical and Computer Engineering., 2020(9), 1–10.

    Google Scholar 

  32. Zhang, H., Wang, G., Li, Y., & Wang, H. (2020). Faster r-cnn, fourth-order partial differential equation and global-local active contour model (fpde-glacm) for plaque segmentation in iv-oct image. Signal, Image and Video Processing., 14(3), 509–517.

    Article  Google Scholar 

  33. Ali, H., Sher, A., Saeed, M., & Rada, L. (2020). Active contour image segmentation model with de-hazing constraints. IET Image Processing., 14(5), 921–928.

    Article  Google Scholar 

  34. Wang, X., Zhao, X., Zhu, Y., & Su, X. (2020). Nsst and vector-valued c–v model based image segmentation algorithm. IET Image Processing, 14(8), 1614–1620.

    Article  Google Scholar 

  35. Qiu, X., Yuan, J., & Li, L. (2020). An improved multi-level set C-V model for grading of korean pine seeds. Journal of Physics Conference Series, 1518, 012033.

    Article  Google Scholar 

  36. Roberts, M., Chen, K., & Irion, K. L. (2019). A convex geodesic selective model for image segmentation. Journal of Mathematical Imaging and Vision. https://doi.org/10.1007/s10851-018-0857-2.

  37. Yu, S., & Yiquan, W. (2020). A morphological approach to piecewise constant active contour model incorporated with the geodesic edge term. Machine Vision and Applications, 31(4), 1–25.

    Article  Google Scholar 

  38. Reckinger, S., & Hughes, B. (2020). Strategies for implementing in-class, active, programming assessments: a multi-level model. In SIGCSE '20 The 51st ACM Technical Symposium on Computer Science Education, ACM.

  39. Sarotte, C., Marzat, J., Piet-Lahanier, H., Ordonneau, G., & Galeotta, M. (2020). Model-based active fault-tolerant control for a cryogenic combustion test bench. Acta Astronautica, 177, 457–477.

    Article  Google Scholar 

  40. Kai, L. I., Jianhua, Z., Shuqing, H., Fantao, K., & Jianzhai, W. U. (2019). Target extraction of cotton disease leaf images based on improved C-V model. Journal of China Agricultural University.

  41. Lakra, M., & Kumar, S. (2020). A cnn-based computational algorithm for nonlinear image diffusion problem. Multimedia Tools and Applications, 79, 23887–23908.

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the Key Laboratory of Intelligent Industrial Control Technology of the Jiangsu Province Research Project (JSKLIIC201705), Science and Technology Project of Ministry of Housing and Urban Rural Development(2014-K5-027), Xuzhou Science and Technology Plan Project (KC19003), the National Natural Science Foundation of China(62001148), the Fundamental Research Funds for the Provincial Universities of Zhejiang(GK199900299012-004), and the General Scientific Research Project of Zhejiang Provincial Education Department(Y201942025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lulu Bei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Bei, L., Bao, J. et al. Image contour detection based on improved level set in complex environment. Wireless Netw 27, 4389–4402 (2021). https://doi.org/10.1007/s11276-021-02664-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02664-5

Keywords

Navigation