Skip to main content
Log in

Bursty data service latency analysis under fractional calculus fluid model of Multi-hop Wireless Networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

A fractional calculus fluid model can be used to better explain the bursty data service traffic, which is long-range dependence and has a fractal like the feature of network data flow. The heavy-tailed delay distributions, the hyperbolic decay of the packet delay auto-covariance function and fractional differential equations are shown to be formally related. Effective capacity is a useful model to describe wireless networks with QoS constraints. This paper builds a fluid model to describe the traffic of multi-hop wireless networks under QoS constraints. The proposed method could analyze the relationship between latency and a complicated traffic model, which is more similar to the real scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huo, L., Jiang, D., Lv, Z., et al. (2019). An intelligent optimization-based traffic information acquirement approach to software-defined networking. Computational Intelligence, 36(1), 1–21.

    Google Scholar 

  2. Wang, F., Jiang, D., & Qi, S. (2019). An adaptive routing algorithm for integrated information networks. China Communications, 7(1), 196–207.

    Google Scholar 

  3. Zhang, K., Chen, L., An, Y., et al. (2019). A QoE test system for vehicular voice cloud services. Mobile Networks and Applications. https://doi.org/10.1007/s11036-019-01415-3

    Article  Google Scholar 

  4. Chen, L., Jiang, D., Bao, R., Xiong, J., Liu, F., & Bei, L. (2017). MIMO Scheduling effectiveness analysis for bursty data service from view of QoE. Chinese Journal of Electronics, 26(5), 1079–1085.

    Article  Google Scholar 

  5. Jiang, D., Wang, Y., Lv, Z., et al. (2020). Big data analysis-based network behavior insight of cellular networks for industry 4.0 applications. IEEE Transactions on Industrial Informatics, 16(2), 1310–1320.

    Article  Google Scholar 

  6. Jiang, D., Huo, L., & Song, H. (2018). Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Transactions on Network Science and Engineering, 1(1), 1–12.

    MathSciNet  Google Scholar 

  7. Chen, L., Jiang, D., Song, H., Wang, P., Bao, R., Zhang, K., & Li, Y. (2018). A lightweight end-side user experience data collection system for quality evaluation of multimedia communications. IEEE Access, 6(1), 15408–15419.

    Article  Google Scholar 

  8. Tan, J., Xiao, S., Han, S., Liang, Y., & Leung, V. C. M. (2019). QoS-aware user association and resource allocation in LAA-LTE/WiFi coexistence systems. IEEE Transactions on Wireless Communications, 18(4), 2415–2430.

    Article  Google Scholar 

  9. Wang, Y., Tang, X., & Wang, T. (2019). A unified QoS and security provisioning framework for wiretap cognitive radio networks: a statistical queueing analysis approach. IEEE Transactions on Wireless Communications, 18(3), 1548–1565.

    Article  Google Scholar 

  10. Hassan, M. Z., Hossain, M. J., Cheng, J., & Leung, V. C. M. (2020). Hybrid RF/FSO backhaul networks with statistical-QoS-aware buffer-aided relaying. IEEE Transactions on Wireless Communications, 19(3), 1464–1483.

    Article  Google Scholar 

  11. Zhang, Z., Wang, R., Yu, F. R., Fu, F., & Yan, Q. (2019). QoS aware transcoding for live streaming in edge-clouds aided hetnets: an enhanced actor-critic approach. IEEE Transactions on Vehicular Technology, 68(11), 11295–11308.

    Article  Google Scholar 

  12. Chen, L., & Zhang, L. (2020). Spectral efficiency analysis for wireless network system under QoS constraint: an effective capacity perspective. Mobile Networks and Applications. https://doi.org/10.1007/s11036-019-01414-4.

    Article  Google Scholar 

  13. Wang, F., Jiang, D., Qi, S., et al. (2021). A dynamic resource scheduling scheme in edge computing satellite networks. Mobile Networks and Applications, 2021(26), 597–608.

    Article  Google Scholar 

  14. Jiang, D., Huo, L., Lv, Z., et al. (2018). A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Transactions on Intelligent Transportation Systems, 19(10), 3305–3319.

    Article  Google Scholar 

  15. Jiang, D., Zhang, P., Lv, Z., et al. (2016). Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things Journal, 3(6), 1437–1447.

    Article  Google Scholar 

  16. Lee, Y., Kim, Y., & Park, S. (2019). A Machine Learning Approach that meets Axiomatic Properties in Probabilistic Analysis of LTE Spectral Efficiency. 2019 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 1451–1453). Korea (South): Jeju Island.

    Chapter  Google Scholar 

  17. Ji, H., Sun, C., & Shieh, W. (2020). Spectral efficiency comparison between analog and digital RoF for mobile fronthaul transmission link. Journal of Lightwave Technology., 38(20), 5617–5623.

    Article  Google Scholar 

  18. Hayati, M., Kalbkhani, H., & Shayesteh, M. G. (2019) Relay selection for spectral-efficient network-coded multi-source d2d communications. 2019 27th Iranian Conference on Electrical Engineering (ICEE), (pp 1377-1381). Yazd: Iran

  19. You, L., Xiong, J., Zappone, A., Wang, W., & Gao, X. (2020). Spectral efficiency and energy efficiency tradeoff in massive MIMO downlink transmission with statistical CSIT. IEEE Transactions on Signal Processing, 68, 2645–2659.

    Article  MathSciNet  Google Scholar 

  20. Jiang, D., Li, W., & Lv, H. (2017). An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing, 220, 160–169.

    Article  Google Scholar 

  21. Wiatr, P., Chen, J., Monti, P., & Wosinska, L. (2015). Energy efficiency versus reliability performance in optical backbone networks [invited] IEEE/OSA. Journal of Optical Communications and Networking, 7(3), A482–A491.

    Article  Google Scholar 

  22. Jiang, D., Wang, Y., Lv, Z., et al. (2021). An energy-efficient networking approach in cloud services for IIoT networks. IEEE Journal on Selected Areas in Communications, 38(5), 928–941.

    Article  Google Scholar 

  23. Jiang, D., Wang, W., Shi, L., et al. (2018). A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Transactions on Network Science and Engineering, 5(3), 1–12.

    Google Scholar 

  24. Jiang, D., Huo, L., & Li, Y. (2018). Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE, 13(5), 1–23.

    Google Scholar 

  25. Wang, Y., Jiang, D., Huo, L., et al. (2021). A new traffic prediction algorithm to software defined networking. Mobile Networks and Applications, 2021(26), 716–725.

    Article  Google Scholar 

  26. Barakabitze, A. A., et al. (2020). QoE management of multimedia streaming services in future networks: a tutorial and survey. IEEE Communications Surveys & Tutorials, 22(1), 526–565.

    Article  Google Scholar 

  27. Orsolic, I., & Skorin-Kapov, L. (2020). A framework for in-network QoE monitoring of encrypted video streaming. IEEE Access, 8, 74691–74706.

    Article  Google Scholar 

  28. Song, E., et al. (2020). Threshold-oblivious on-line web QoE assessment using neural network-based regression model. IET Communications, 14(12), 2018–2026.

    Article  Google Scholar 

  29. Seufert, M., Wassermann, S., & Casas, P. (2019). Considering user behavior in the quality of experience cycle: towards proactive QoE-aware traffic management. IEEE Communications Letters, 23(7), 1145–1148.

    Article  Google Scholar 

  30. Chen, L., & Zhang, L. (2020). Spectral efficiency analysis for wireless network system under QoS constraint: an effective capacity perspective. Mobile Networks and Applications, 26(2), 691–699.

    Article  Google Scholar 

  31. Qi, S., Jiang, D., & Huo, L. (2021). A prediction approach to end-to-end traffic in space information networks. Mobile Networks and Applications, 2021(26), 726–735.

    Article  Google Scholar 

  32. Huo, L., Jiang, D., Qi, S., et al. (2021). An AI-based adaptive cognitive modeling and measurement method of network traffic for EIS. Mobile Networks and Applications, 2021(26), 575–585.

    Article  Google Scholar 

  33. Huo, L., Jiang, D., Zhu, X., et al. (2019). A SDN based fine grained measurement and modeling approach to vehicular communication network traffic. International Journal of Communication Systems, 2019(9), 1–19. https://doi.org/10.1002/dac.4092.

    Article  Google Scholar 

  34. Zaborovsky, V., & Meylanov, R., (2001) Informational Network traffic model based on fractional calculus. International Conferences on Info-tech & Info-net

  35. Guo, C., Liang, L., & Li, G. Y. (2019). Resource allocation for low-latency vehicular communications: an effective capacity perspective. IEEE Journal on Selected Areas in Communications, 37(4), 905–917.

    Article  Google Scholar 

  36. Shehab, M., Alves, H., & Latva-aho, M. (2019). Effective capacity and power allocation for machine-type communication. IEEE Transactions on Vehicular Technology, 68(4), 4098–4102.

    Article  Google Scholar 

  37. Cui, Q., Gu, Y., Ni, W., & Liu, R. P. (2017). Effective capacity of licensed-assisted access in unlicensed spectrum for 5g: from theory to application. IEEE Journal on Selected Areas in Communications, 35(8), 1754–1767.

    Article  Google Scholar 

  38. Xiao, C., Zeng, J., Ni, W., Liu, R. P., Su, X., & Wang, J. (2019). Delay guarantee and effective capacity of downlink noma fading channels. IEEE Journal of Selected Topics in Signal Processing, 13(3), 508–523.

    Article  Google Scholar 

  39. Björnson, E., Larsson, E. G., & Debbah, M. (2016). Massive MIMO for maximal spectral efficiency: how many users and pilots should be allocated? IEEE Transactions on Wireless Communications, 15(2), 1293–1308.

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by Jiangsu technology project of Housing and Urban-Rural Development (No.2018ZD265) and Jiangsu major natural science research project of College and University (No. 19KJA470002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuangeng Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Tian, C., Cui, P. et al. Bursty data service latency analysis under fractional calculus fluid model of Multi-hop Wireless Networks. Wireless Netw 27, 4403–4409 (2021). https://doi.org/10.1007/s11276-021-02666-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02666-3

Keywords

Navigation