Skip to main content
Log in

A Survey on Wireless Position Estimation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, an overview of various algorithms for wireless position estimation is presented. Although the position of a node in a wireless network can be estimated directly from the signals traveling between that node and a number of reference nodes, it is more practical to estimate a set of signal parameters first, and then to obtain the final position estimation using those estimated parameters. In the first step of such a two-step positioning algorithm, various signal parameters such as time of arrival, angle of arrival or signal strength are estimated. In the second step, mapping, geometric or statistical approaches are commonly employed. In addition to various positioning algorithms, theoretical limits on their estimation accuracy are also presented in terms of Cramer–Rao lower bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Caffery J.J. (2000). Wireless location in CDMA cellular radio systems. Kluwer, Boston

    Google Scholar 

  2. “IEEE 15-03-0489-03-004a-application-requirement-analysis-031127 v0.4.” [Online]. Available: http://www.ieee802.org/15/pub/TG4.html

  3. IEEE P802.15.4a/D4 (Amendment of IEEE Std 802.15.4), “Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LRW-PANs),” July 2006.

  4. Commission, F. C. (1996). Revision of the commissions rules to insure compatibility with enhanced 911 emergency calling systems. FCC Docket No. 94–102.

  5. Gezici S., Tian Z., Giannakis G.B., Kobayashi H., Molisch A.F., Poor H.V., Sahinoglu Z. (2005). Localization via ultra-wideband radios: A look at positioning aspects for future sensor networks. IEEE Signal Processing Magazine 22(4): 70–84

    Article  Google Scholar 

  6. Gustafsson F., Gunnarsson F. (2005). Mobile positioning using wireless networks. IEEE Signal Processing Magazine 22(4): 41–53

    Article  Google Scholar 

  7. Weiss A.J. (2004). Direct position determination of narrowband radio frequency transmitters. IEEE Signal Processing Letters 11(5): 513–516

    Article  Google Scholar 

  8. Qi Y., Kobayashi H., Suda H. (2006). Analysis of wireless geolocation in a non-line-of-sight environment. IEEE Transactions on Wireless Communications 5(3): 672–681

    Article  Google Scholar 

  9. Proakis J.G. (2000). Digital communications (4th ed.). Mc Graw Hill, New York

    Google Scholar 

  10. Qi, Y. (2004). Wireless geolocation in a non-line-of-sight environment. Ph.D. Dissertation, Princeton University.

  11. Patwari N., Ash J.N., Kyperountas S., Hero A.O., Moses R.L., Correal N.S. (2005). Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine 22(4): 54–69

    Article  Google Scholar 

  12. Gezici S., Sahinoglu Z., Kobayashi H., Poor H.V. (2005) Ultra wideband geolocation. Wiley, in Ultrawideband Wireless Communications, New York

    Book  Google Scholar 

  13. Mallat, A., Louveaux, J., & Vandendorpe, L. (2007). UMB based positioning in multipath channels: CRBS for AOA and for hybrid TOA-AOA based methods. In: Proceedings of the IEEE international conference on communications (ICC), Glasgow, Scotland, June 2007.

  14. Lee J.-Y., Scholtz R.A. (2002). Ranging in a dense multipath environment using an UWB radio link. IEEE Journal of Selected Areas Communications 20(9): 1677–1683

    Article  Google Scholar 

  15. Lindsey W.C., Simon M.K. (1991). Phase and Doppler measurements in two-way phase-coherent tracking systems. Dover, New York

    Google Scholar 

  16. Turin G.L. (1960). An introduction to matched filters. IRE Transactions on Information Theory IT-6(3): 311–329

    Article  MathSciNet  Google Scholar 

  17. Pallas M.-A., Jourdain G. (1991). Active high resolution time delay estimation for large BT signals. IEEE Transactions on Signal Processing 39: 781–788

    Article  Google Scholar 

  18. Guvenc, I. & Sahinoglu, Z. (2005). Threshold-based TOA estimation for impulse radio UWB systems. In Proceedings of the IEEE int. conf. UWB (ICU), Zurich, Switzerland, pp. 420–425.

  19. Gezici, S., Sahinoglu, Z., Kobayashi, H., Poor, H. V., & Molisch, A. F. (2005). A two-step time of arrival estimation algorithm for impulse radio ultrawideband systems. In Proceedings of the 13th European signal processing conf. (EUSIPCO 2005), Antalya, Turkey.

  20. Yang, L., & Giannakis, G. B. (2004). Blind uwb timing with a dirty template. In Proceedings of the intl. conf. on acoustics, speech and signal processing, Montreal, Quebec, Canada, Vol. 4, pp. 509–512.

  21. Poor H.V. (1994). An introduction to signal detection and estimation. Springer, New York

    MATH  Google Scholar 

  22. Cook C.E., Bernfeld M. (1970). Radar signals: An introduction to theory and applications. Academic Press, New York

    Google Scholar 

  23. Botteron C., Host-Madsen A., Fattouche M. (2004). Cramer-rao bounds for the estimation of multipath parameters and mobiles’ positions in asynchronous ds-cdma systems. IEEE Transactions on Signal Processing 52(4): 862–875

    Article  MathSciNet  Google Scholar 

  24. Caffery J.J., Stuber G.L. (1998). Subscriber location in CDMA cellular networks. IEEE Transactions on Vehicular Technology 47(2): 406–416

    Article  Google Scholar 

  25. Knapp C., Carter G. (1976). The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech, and Signal Processing 24: 320–327

    Article  Google Scholar 

  26. Champagne, B., Eizenman, M., & Pasupathy, S. (1989). Exact maximum likelihood time delay estimation. In Proceedings of the international conference of acoustics, speech, and signal processing (ICASSP 1989), Glasgow, Scotland, Vol. 4, pp. 23–26.

  27. Belanger, S. P. (1995). Multisensor TDOA estimation in a multipath propagation environment using the em algorithm. In Proceedings of the 29th asilomar conference on signals, systems and computers (ASILOMAR 1995), Pacific Grove, CA, Vol. 2, pp. 1096–1100.

  28. Aatique, M. (1997). Evaluation of TDOA techniques for position location in CDMA. Master’s thesis, Virginia Polytechnic Institute and State University.

  29. Cong L., Zhuang W. (2002). Hybrid TOA/AOA mobile user location for wideband CDMA cellular systems. IEEE Transactions on Wireless Communications 1(3): 439–447

    Article  Google Scholar 

  30. Catovic A., Sahinoglu Z. (2004). The Cramer–Rao bounds of hybrid TOA/RSS and TDOA/RSS location estimation schemes. IEEE Communications Letters 8: 626–628

    Article  Google Scholar 

  31. Cong L., Zhuang W. (2002). Hybrid TDOA/AOA mobile user location for wide-band cdma cellular systems. IEEE Transactions on Wireless Communications 1: 439–447

    Article  Google Scholar 

  32. Reza, R. I. (2000). Data fusion for improved TOA/TDOA position determination in wireless systems. Ph.D. Dissertation, Virginia Tech.

  33. Nerguizian, C., Despins, C., & Affes, S. (2001). Framework for indoor geolocation using an intelligent system. In Proceedings of the 3rd IEEE workshop on wireless LANs, Newton, MA.

  34. Triki, M., Slock, D. T. M., Rigal, V., & Francois, P. (2006) Mobile terminal positioning via power delay profile fingerprinting: Reproducible validation simulations. In Proceedings of the IEEE vehicular technology conference (VTC 2006 Fall), Montreal, Canada.

  35. Althaus, F., Troesch, F., & Wittneben, A. (2005). Uwb geo regioning in rich multipath environment. In Proceedings of the IEEE vehicular technology conference (VTC 2005 Fall), Dallas, TX.

  36. Nerguizian C., Despins C., Affes S. (2006). Geolocation in mines with an impulse response fingerprinting technique and neural networks. IEEE Transactions on Wireless Communications 5: 603–611

    Google Scholar 

  37. McGuire M., Plataniotis K.N., Venetsanopoulos A.N. (2003). Location of mobile terminals using time measurements and survey points. IEEE Transactions on Vehicular Technology 52(4): 999–1011

    Article  Google Scholar 

  38. Gezici, S., Kobayashi, H., & Poor, H. V. (2003). A new approach to mobile position tracking. In Proceedings of the IEEE sarnoff symposium on advances in wired and wireless communications, Ewing, NJ, pp. 204–207.

  39. Lin, T.-N., & Lin, P.-C. (2005). Performance comparison of indoor positioning techniques based on location fingerprinting in wireless networks. In Proceedings of the international conference on wireless networks, communications and mobile computing, Maui, Hawaii, Vol. 2, pp. 1569–1574.

  40. Duda R.O., Hart P.E., Stork D.G. (2000). Pattern classification (2nd ed.). Wiley- Interscience, New York

    Google Scholar 

  41. Sayed A.H., Taroghat A., Khajehnouri N. (2005). Network-based wireless location. IEEE Signal Processing Magazine 22(4): 24–40

    Article  Google Scholar 

  42. Cong L., Zhuang W. (2005). Non-line-of-sight error mitigation in mobile location. IEEE Transactions on Wireless Communications 4: 560–573

    Article  Google Scholar 

  43. Casas, R., Marco, A., Guerrero, J. J., & Falco, J. (2006). Robust estimator for non-line-of-sight error mitigation in indoor localization. EURASIP Journal on Applied Signal Processing, 2006, Article ID 43 429, 8 pages, doi: 10.1155/ASP/2006/43429.

  44. Chen, P. C. (1999). A non-line-of-sight error mitigation algorithm in location estimation. In Proceedings of the IEEE wireless communications and networking conference (WCNC 1999), New Orleans, LA, Vol. 1, pp. 316–320.

  45. Caffery J.J., Stuber G.L. (1998). Overview of radiolocation in CDMA cellular systems. IEEE Communications Magazine 36(4): 38–45

    Article  Google Scholar 

  46. Al-Jazzar, S., & Caffery, J. J. (2002). ML and bayesian toa location estimators for NLOS environments. In Proceedings of the IEEE vehicular technology conference (VTC 2002) Fall, Vancouver, BC, Vol. 2, 1178–1181.

  47. Kim W., Lee J.G., Jee G.I. (2006). The interior-point method for an optimal treatment of bias in trilateration location. IEEE Transactions on Vehicular Technology 55(4): 1291–1301

    Article  Google Scholar 

  48. Borras, J., Hatrack, P., & Mandayam, N. B. (1998). Decision theoretic framework for NLOS identification. In Proceedings of the IEEE vehicular technology conference (VTC 1998), Ottowa, ON, Canada, Vol. 2, pp. 1583–1587.

  49. Venkatraman, S., & Caffery, J. (2002). A statistical approach to non-line-of-sight BS identification. In Proceedings of the 25th international symposium on wireless personal multimedia communications, Honolulu, HI, pp. 296–300.

  50. Gezici, S., Kobayashi, H., & Poor, H. V. (2003). Non-parametric non-line-of-sight identification. In Proceedings of the IEEE 58th vehicular technology conference (VTC 2003 Fall), Orlando, FL, Vol. 4, pp. 2544–2548.

  51. Al-Jazzar, S., Caffery, J. J., & You, H.-R. (2002). A scattering model based approach to NLOS mitigation in TOA location systems. In Proceedings of the IEEE vehicular technology conference (VTC 2002) spring, Birmingham, AL, pp. 861–865.

  52. Qi Y., Kobayashi H., Suda H. (2006). On time-of-arrival positioning in a multipath environment. IEEE Transactions on Vehicular Technology 55(5): 1516–1526

    Article  Google Scholar 

  53. Qi, Y., & Kobayashi, H. (2003). On relation among time delay and signal strength based geolocation methods. In Proceedings of the IEEE global communications conference, San Francisco, CA, Vol. 7, pp. 4079–4083.

  54. Arulampalam S., Maskell S., Gordon N., Clapp T. (2002). A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing 50(2): 174–188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Gezici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gezici, S. A Survey on Wireless Position Estimation. Wireless Pers Commun 44, 263–282 (2008). https://doi.org/10.1007/s11277-007-9375-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-007-9375-z

Keywords

Navigation