Skip to main content
Log in

On the Effects of Frequency Scaling Over Capacity Scaling in Underwater Networks—Part II: Dense Network Model

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This is the second in a two-part series of papers on information-theoretic capacity scaling laws for an underwater acoustic network. Part II focuses on a dense network scenario, where nodes are deployed in a unit area. By deriving a cut-set upper bound on the capacity scaling, we first show that there exists either a bandwidth or power limitation, or both, according to the operating regimes (i.e., path-loss attenuation regimes), thus yielding the upper bound that follows three fundamentally different information transfer arguments. In addition, an achievability result based on the multi-hop (MH) transmission is presented for dense networks. MH is shown to guarantee the order optimality under certain operating regimes. More specifically, it turns out that scaling the carrier frequency faster than or as \(n^{1/4}\) is instrumental towards achieving the order optimality of the MH protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We use the following notation: (i) \(f(x)=O(g(x))\) means that there exist constants \(C\) and \(c\) such that \(f(x)\le Cg(x)\) for all \(x>c\). (ii) \(f(x)=o(g(x))\) means that \(\lim \nolimits _{x\rightarrow \infty }\frac{f(x)}{g(x)}=0\). (iii) \(f(x)=\varOmega (g(x))\) if \(g(x)=O(f(x))\). iv) \(f(x)=\omega (g(x))\) if \(g(x)=o(f(x))\). v) \(f(x)=\varTheta (g(x))\) if \(f(x)=O(g(x))\) and \(g(x)=O(f(x))\) [13].

  2. Note that such an upper-bounding technique has been commonly used when we would like to characterize a cut-set upper bound in large-scale ad hoc networks [4, 16].

References

  1. Shin, W.-Y., Lucani, D. E., Médard, M., Stojanovic, M., & Tarokh, V. (2012). On the order optimality of large-scale underwater networks–Part I: Extended network model. Wireless Personal Communications. doi:10.1007/s11277-012-0904-Z

  2. Franceschetti, M., Dousse, O., Tse, D. N. C., & Thiran, P. (2007). Closing the gap in the capacity of wireless networks via percolation theory. IEEE Transactions on Information Theory, 53(3), 1009–1018.

    Article  MathSciNet  Google Scholar 

  3. Jovicic, A., Viswanath, P., & Kulkarni, S. R. (2004). Upper bounds to transport capacity of wireless networks. IEEE Transactions on Information Theory, 50(11), 2555–2565.

    Article  MathSciNet  Google Scholar 

  4. Özgür, A., Lévêque, O., & Tse, D. N. C. (2007). Hierarchical cooperation achieves optimal capacity scaling in ad hoc networks. IEEE Transactions on Information Theory, 53(10), 3549–3572.

    Article  Google Scholar 

  5. Xie, L.-L., & Kumar, P. R. (2004). A network information theory for wireless communication: Scaling laws and optimal operation. IEEE Transactions on Information Theory, 50(5), 748–767.

    Article  MathSciNet  Google Scholar 

  6. Xue, F., Xie, L.-L., & Kumar, P. R. (2005). The transport capacity of wireless networks over fading channels. IEEE Transactions on Information Theory, 51(3), 834–847.

    Article  MathSciNet  Google Scholar 

  7. Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.

    Article  MathSciNet  MATH  Google Scholar 

  8. El Gamal, A., Mammen, J., Prabhakar, B., & Shah, D. (2006). Optimal throughput-delay scaling in wireless networks-part I: The fluid model. IEEE Transactions on Information Theory, 52(6), 2568–2592.

    Article  MathSciNet  Google Scholar 

  9. Özgür, A., Johari, R., Tse, D. N. C., & Lévêque, O. (2010). Information-theoretic operating regimes of large wireless networks. IEEE Transactions on Information Theory, 56(1), 427–437.

    Article  Google Scholar 

  10. Urick, R. J. (1983). Principles of underwater sound. New York: McGraw-Hill.

    Google Scholar 

  11. Stojanovic, M. (2007). On the relationship between capacity and distance in an underwater acoustic communication channel. ACM SIGMOBILE Mobile Computing and Communications, Review (MC2R), 11(4), 34–43.

    Article  MathSciNet  Google Scholar 

  12. Berkhovskikh, L., & Lysanov, Y. (1982). Fundamentals of ocean acoustics. New York: Springer.

    Book  Google Scholar 

  13. Knuth, D. E. (1976). Big omicron and big omega and big theta. ACM SIGACT News, 8, 18–24.

    Article  Google Scholar 

  14. Coates, R. (1989). Underwater acoustic systems. New York: Wiley.

    Google Scholar 

  15. Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.

    Book  MATH  Google Scholar 

  16. Shin, W.-Y., Jeon, S.-W., Devroye, N., Vu, M. H., Chung, S.-Y., Lee, Y. H., et al. (2011). Improved capacity scaling in wireless networks with infrastructure. IEEE Transactions on Information Theory, 57(8), 5088–5102.

    Article  MathSciNet  Google Scholar 

  17. Constantinescu, F., & Scharf, G. (1998). Generalized Gram-Hadamard inequality. Journal of Inequalities and Applications, 2, 381–386.

    MathSciNet  MATH  Google Scholar 

  18. Lucani, D. E., Médard, M., & Stojanovic, M. (2008). Capacity scaling laws for underwater networks. In Proceedings of asilomar conference on signals, systems and computers (pp. 2125–2129).

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A1044151), by the Air Force Office of Scientific Research (AFOSR) under award No. 016974-002, by the National Science Foundation under grant No. 501731, and by the ONR grant No. 599257. This material in this paper was presented in part at the Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, November 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Yong Shin.

Appendix

Appendix

1.1 Proof of Lemma 1

Upper and lower bounds on \(P_L^{(k)}\) in a dense network are derived by basically following the same node indexing and layering techniques as those in Part I. We refer to Appendix A.2 and Figure 4 in [1] for the detailed description (note that the destination nodes are, however, located at positions \(\left(\frac{k_x}{\sqrt{n}}, \frac{k_y}{\sqrt{n}}\right)\) in dense networks). Similarly to the extended network case, from (9), the term \(P_{L}^{(k)}\) is then given by

$$\begin{aligned} P_{L}^{(k)}= \frac{P}{c_0}\sum _{i_x=1}^{\sqrt{n}/2}\sum _{i_y=1}^{\sqrt{n}}\frac{n^{\alpha /2}}{\left((i_x+k_x-1)^2+(i_y-k_y)^2\right)^{\alpha /2}a(f)^{\sqrt{\left((i_x+k_x-1)^2+(i_y-k_y)^2\right)/n}}}. \end{aligned}$$

First, focus on how to obtain an upper bound for \(P_{L}^{(k)}\). Assuming that all the nodes in each layer are moved onto the innermost boundary of the corresponding ring, we then have

$$\begin{aligned} P_{L}^{(k)}&\le \frac{Pn^{\alpha /2}}{c_0}\sum _{i^{\prime }=k_x}^{k_x+\sqrt{n}/2-1} \frac{c_5(i^{\prime }+1)}{i^{\prime \alpha }a(f)^{i^{\prime }\sqrt{n}}} \nonumber \\&\le \frac{2c_5Pn^{\alpha /2}}{c_0}\sum _{i^{\prime }=k_x}^{\sqrt{n}}\frac{1}{i^{\prime \alpha -1}a(f)^{i^{\prime }\sqrt{n}}} \nonumber \\&= c_6Pn^{\alpha /2}\sum _{i^{\prime }=k_x}^{\sqrt{n}}\frac{1}{i^{\prime \alpha -1} \left(1+\epsilon _0\right)^{i^{\prime }n^{\beta -1/2}}} \end{aligned}$$
(20)

for some positive constants \(c_0\), \(c_5\), and \(c_6\) independent of \(n\) and an arbitrarily small \(\epsilon _0>0\), where the equality comes from the relationship (8) between \(a(f)\) and \(\beta \). We first consider the case where \(k_x=o\left(n^{1/2-\beta +\epsilon }\right)\) for an arbitrarily small \(\epsilon >0\). Under this condition, from the fact that the term \(i^{\prime \alpha -1}\) in the RHS of (20) is dominant in terms of upper-bounding \(P_{L}^{(k)}\) for \(i^{\prime }=k_x,\ldots ,\sqrt{n}\), (20) is further bounded by

$$\begin{aligned} P_{L}^{(k)}&\le c_6Pn^{\alpha /2}\sum _{i^{\prime }=k_x}^{\sqrt{n}}\frac{1}{i^{\prime \alpha -1}} \\&\le c_6Pn^{\alpha /2}\left(\frac{1}{k_x^{\alpha -1}}+\int \limits _{k_x}^{\sqrt{n}}\frac{1}{x^{\alpha -1}}dx\right), \end{aligned}$$

which yields \(P_{L}^{(k)}=O\left(n^{\alpha /2}(\sqrt{n})^{2-\alpha }\right)=O(n)\) for \(1\le \alpha <2\) and \(P_{L}^{(k)}=O\left(n\log n\right)\) for \(\alpha =2\). When \(k_x=\varOmega (n^{1/2-\beta +\epsilon })\), the upper bound (20) for \(P_{L}^{(k)}\) is dominated by the term \(\left(1+\epsilon _0\right)^{i^{\prime }n^{\beta -1/2}}\), and thus is given by

$$\begin{aligned} P_{L}^{(k)}&\le c_6Pn^{\alpha /2}\sum _{i^{\prime }=k_x}^{\sqrt{n}}\frac{1}{\left(1+\epsilon _0\right)^{i^{\prime }n^{\beta -1/2}}} \nonumber \\&\le c_6Pn^{\alpha /2}\left(\frac{1}{\left(1+\epsilon _0\right)^{k_x n^{\beta -1/2}}}+\int \limits _{k_x}^{\sqrt{n}}\frac{1}{\left(1+\epsilon _0\right)^{x n^{\beta -1/2}}}dx\right) \nonumber \\&= c_6Pn^{\alpha /2}\left(\frac{1}{\left(1+\epsilon _0\right)^{k_x n^{\beta -1/2}}}+\int \limits _{1}^{\sqrt{n}/k_x}\frac{k_x}{\left(1+\epsilon _0\right)^{x k_x n^{\beta -1/2}}}dx\right) \nonumber \\&\le c_6Pn^{\alpha /2}\left(\frac{1}{\left(1+\epsilon _0\right)^{k_x n^{\beta -1/2}}}+\frac{n^{1/2-\beta }}{\left(1+\epsilon _0\right)^{k_x n^{\beta -1/2}}}\right) \nonumber \\&\le \frac{c_7Pn^{\alpha /2}}{\left(1+\epsilon _0\right)^{k_x n^{\beta -1/2}}}\max \left\{ 1,n^{1/2-\beta }\right\} \end{aligned}$$
(21)

for some constant \(c_7>0\) independent of \(n\), which is the last result in (10).

Next, let us turn to deriving a lower bound for \(P_{L}^{(k)}\). Since each layer has at least one node that is onto the innermost boundary of the corresponding ring, the lower bound similarly follows

$$\begin{aligned} P_{L}^{(k)}&\ge \frac{Pn^{\alpha /2}}{c_0}\sum _{i^{\prime }=k_x}^{k_x+\sqrt{n}/2-1} \frac{1}{i^{\prime \alpha }a(f)^{i^{\prime }\sqrt{n}}} \nonumber \\&= c_6Pn^{\alpha /2}\sum _{i^{\prime }=k_x}^{k_x+\sqrt{n}/2-1}\frac{1}{i^{\prime \alpha }\left(1+\epsilon _0\right)^{i^{\prime }n^{\beta -1/2}}}. \end{aligned}$$
(22)

For the condition \(k_x=o(n^{1/2-\beta +\epsilon })\), (22) is represented as

$$\begin{aligned} P_{L}^{(k)}&\ge c_6Pn^{\alpha /2}\sum _{i^{\prime }=k_x}^{k_x+\sqrt{n}/2-1}\frac{1}{i^{\prime \alpha }\left(1+\epsilon _0\right)^{i^{\prime }n^{\beta -1/2}}} \\&\ge c_6Pn^{\alpha /2}\sum _{i^{\prime }=k_x}^{2k_x-1}\frac{1}{i^{\prime \alpha }\left(1+\epsilon _0\right)^{i^{\prime }n^{\beta -1/2}}} \\&\ge \frac{c_6Pn^{\alpha /2}}{n^{\epsilon ^{\prime }}}\sum _{i^{\prime }=k_x}^{2k_x-1}\frac{1}{i^{\prime \alpha }} \\&\ge \frac{c_8Pn^{\alpha /2}}{n^{\epsilon ^{\prime }}k_x^{\alpha -1}} \end{aligned}$$

for an arbitrarily small \(\epsilon ^{\prime }>0\) and some constant \(c_8>0\) independent of \(n\), where the third inequality holds due to \(\left(1+\epsilon _0\right)^{k_x n^{\beta -1/2}}=O(n^{\epsilon ^{\prime }})\). On the other hand, similarly as in the steps of (21), the condition \(k_x=\varOmega (n^{1/2-\beta +\epsilon })\) yields the following lower bound for \(P_{L}^{(k)}\):

$$\begin{aligned} P_{L}^{(k)}&\ge c_6P \sum _{i^{\prime }=k_x}^{k_x+\sqrt{n}/2-1}\frac{1}{\left(1+\epsilon _0\right)^{i^{\prime }n^{\beta -1/2}}} \\&\ge c_6P \left(\frac{1}{\left(1+\epsilon _0\right)^{k_x n^{\beta -1/2}}}+\int \limits _{k_x+1}^{k_x+\sqrt{n}/2-1}\frac{1}{\left(1+\epsilon _0\right)^{x n^{\beta -1/2}}}dx\right) \\&\ge c_9P\left(\frac{1}{\left(1+\epsilon _0\right)^{k_x n^{\beta -1/2}}}+\frac{n^{1/2-\beta }}{\left(1+\epsilon _0\right)^{(k_x+1) n^{\beta -1/2}}}\right) \\&\ge \frac{c_9P}{\left(1+\epsilon _0\right)^{k_x n^{\beta -1/2}}}\max \left\{ 1,\frac{n^{1/2-\beta }}{\left(1+\epsilon _0\right)^{n^{\beta -1/2}}}\right\} \end{aligned}$$

some constant \(c_9>0\) independent of \(n\), which finally complete the proof of the lemma.

1.2 Proof of Lemma 2

The layering technique used in Part I is similarly applied (see Fig. 2 in [1]). From (1), the total interference power \(P_I\) at each node from simultaneously transmitting nodes is upper-bounded by

$$\begin{aligned} P_I&= \sum _{k=1}^{\sqrt{n}}(8k)\frac{P\min \left\{ 1,\frac{a(f)^{1/\sqrt{n}}N(f)}{n^{\alpha /2}}\right\} }{c_0(k/\sqrt{n})^\alpha a(f)^{k/\sqrt{n}}} \nonumber \\&= \frac{8Pn^{\alpha /2}\min \left\{ 1,\frac{a(f)^{1/\sqrt{n}}N(f)}{n^{\alpha /2}}\right\} }{c_0}\sum _{k=1}^{\sqrt{n}}\frac{1}{k^{\alpha -1}a(f)^{k/\sqrt{n}}}. \end{aligned}$$
(23)

Using (4) and (8), the upper bound (23) on \(P_I\) can be expressed as

$$\begin{aligned} P_I&\le c_{10}Pn^{\alpha /2}\min \left\{ 1,\frac{(1+\epsilon _0)^{n^{\beta -1/2}}}{n^{(\alpha +\beta a_0)/2}}\right\} \sum \limits _{k=1}^{\sqrt{n}}\frac{1}{k^{\alpha -1}(1+\epsilon _0)^{kn^{\beta -1/2}}} \\&\le \left\{ \begin{array}{lll} \frac{c_{10}P}{n^{\beta a_0/2}}\sum \limits _{k=1}^{\sqrt{n}}\frac{1}{k^{\alpha -1}(1+\epsilon _0)^{kn^{\beta -1/2}}}&\quad \mathrm{if}\; 0\le \beta <1/2 \\ \frac{c_{10}P}{n^{\beta a_0/2}}\sum \limits _{k=1}^{\sqrt{n}}\frac{1}{(1+\epsilon _0)^{k}}&\quad \mathrm{if}\; \beta =1/2 \\ c_{10}Pn^{\alpha /2}\sum \limits _{k=1}^{\sqrt{n}}\frac{1}{(1+\epsilon _0)^{kn^{\beta -1/2}}}&\quad \mathrm{if} \;\beta >1/2 \end{array}\right. \\&\le \left\{ \begin{array}{lll} \frac{c_{10}P}{n^{\beta a_0/2}}\sum \limits _{k=1}^{\sqrt{n}}\frac{1}{k^{\alpha -1}(1+\epsilon _0)^{kn^{\beta -1/2}}}&\quad \mathrm{if}\; 0\le \beta <1/2 \\ \frac{c_{10}P}{n^{\beta a_0/2}}\frac{1}{(1+\epsilon _0)-1}&\quad \mathrm{if}\; \beta =1/2 \\ c_{10}Pn^{\alpha /2}\frac{1}{(1+\epsilon _0)^{n^{\beta -1/2}}-1}&\quad \mathrm{if}\; \beta >1/2 \end{array}\right. \\&\le \left\{ \begin{array}{lll} \frac{c_{10}P}{n^{\beta a_0/2}}\sum \limits _{k=1}^{\sqrt{n}}\frac{1}{k^{\alpha -1}(1+\epsilon _0)^{kn^{\beta -1/2}}}&\quad \mathrm{if}\; 0\le \beta <1/2 \\ \frac{c_{11}P}{n^{\beta a_0/2}}&\quad \mathrm{if}\; \beta =1/2 \\ \frac{c_{11}Pn^{\alpha /2}}{(1+\epsilon _0)^{n^{\beta -1/2}}}&\quad \mathrm{if} \;\beta >1/2 \\ \end{array}\right. \end{aligned}$$

for some positive constants \(c_{10}\) and \(c_{11}\) independent of \(n\). Based on the argument in Appendix 6.1, when \(0\le \beta <1/2\), it follows that

$$\begin{aligned} \sum _{k=1}^{\sqrt{n}}\frac{1}{k^{\alpha -1}(1+\epsilon _0)^{kn^{\beta -1/2}}}&= \sum _{k=1}^{n^{1/2-\beta }-1}\frac{1}{k^{\alpha -1}(1+\epsilon _0)^{kn^{\beta -1/2}}} + \sum _{k=n^{1/2-\beta }}^{\sqrt{n}}\frac{1}{k^{\alpha -1}(1+\epsilon _0)^{kn^{\beta -1/2}}}\\&\le \sum _{k=1}^{n^{1/2-\beta }-1}\frac{1}{k^{\alpha -1}} + \frac{1}{n^{(1/2-\beta )(\alpha -1)}}\sum _{k=n^{1/2-\beta }}^{\sqrt{n}}\frac{1}{(1+\epsilon _0)^{kn^{\beta -1/2}}} \\&\le \left(1+\int \limits _1^{n^{1/2-\beta }}\frac{1}{x^{\alpha -1}}dx\right) \\&+ \frac{1}{n^{(1/2-\beta )(\alpha -1)}}\left(\frac{1}{1+\epsilon _0}+\int \limits _{n^{1/2-\beta }}^{\sqrt{n}}\frac{1}{(1+\epsilon _0)^{xn^{\beta -1/2}}}dx\right) \\&\le 2\int \limits _1^{n^{1/2-\beta }}\frac{1}{x^{\alpha -1}}dx + \frac{2}{n^{(1/2-\beta )(\alpha -1)}}\int \limits _{1}^{n^\beta }\frac{n^{1/2-\beta }}{(1+\epsilon _0)^{x}}dx \\&\le \left\{ \begin{array}{lll} 4n^{(1/2-\beta )(2-\alpha )}&\quad \mathrm{if}\; 1\le \alpha <2 \\ \log n&\quad \mathrm{if}\; \alpha =2, \end{array}\right. \end{aligned}$$

which results in \(P_I=O\left(\frac{\max \left\{ n^{(1/2-\beta )(2-\alpha )},\log n\right\} }{n^{\beta a_0/2}}\right)\). This completes the proof of the lemma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, WY., Lucani, D.E., Médard, M. et al. On the Effects of Frequency Scaling Over Capacity Scaling in Underwater Networks—Part II: Dense Network Model. Wireless Pers Commun 71, 1701–1719 (2013). https://doi.org/10.1007/s11277-012-0982-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0982-y

Keywords

Navigation