Skip to main content
Log in

Efficient Hardware-Based Image Compression Schemes for Wireless Sensor Networks: A Survey

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Multidimensional sensors, such as digital camera sensors in the visual sensor networks VSNs generate a huge amount of information compared with the scalar sensors in the wireless sensor networks WSNs. Processing and transmitting such data from low power sensor nodes is a challenging issue through their limited computational and restricted bandwidth requirements in a hardware constrained environment. Source coding can be used to reduce the size of vision data collected by the sensor nodes before sending it to its destination. With image compression, a more efficient method of processing and transmission can be obtained by removing the redundant information from the captured image raw data. In this paper, a survey of the main types of the conventional state of the art image compression standards such as JPEG and JPEG2000 is provided. A literature review of their advantages and shortcomings of the application of these algorithms in the VSN hardware environment is specified. Moreover, the main factors influencing the design of compression algorithms in the context of VSN are presented. The selected compression algorithm may have some hardware-oriented properties such as; simplicity in coding, low memory need, low computational load, and high-compression rate. In this survey paper, an energy efficient hardware based image compression is highly requested to counter the severe hardware constraints in the WSNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Google Scholar 

  2. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. Communications Magazine, IEEE, 40(8), 102–114.

    Article  Google Scholar 

  3. Culler, D., Estrin, D., & Srivastava, M. (2004). Guest editors’ introduction: Overview of sensor networks. Computer, 37(8), 41–49.

    Google Scholar 

  4. Tubaishat, M., & Madria, S. (2003). Sensor networks: An overview. Potentials, IEEE, 22(2), 20–23.

    Article  Google Scholar 

  5. García-Hernández, C. F., Ibarguengoytia-Gonzalez, P. H., & Perez-Diaz, J. A. (2007). Wireless sensor networks and applications: A survey. IJCSNS International Journal of Computer Science and Network Security, 7(3), 264–273.

    Google Scholar 

  6. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  7. Yang, Z., Liao, S., & Cheng, W. (2009). Joint power control and rate adaptation in wireless sensor networks. Ad Hoc Networks, 7(2), 401–410.

    Article  Google Scholar 

  8. Charfi, Y., Wakamiya, N., & Murata, M. (2009). Challenging issues in visual sensor networks. Wireless Communications, IEEE, 16(2), 44–49.

    Article  Google Scholar 

  9. Polastre, J., Szewczyk, R., Mainwaring, A., Culler, D., & Anderson, J. (2004). Analysis of wireless sensor networks for habitat monitoring. In Wireless sensor networks pp. (399–423). USA: Springer.

  10. Magli, E., Mancin, M., & Merello, L. (2003, July). Low-complexity video compression for wireless sensor networks. In Multimedia and expo, 2003. ICME’03. Proceedings. 2003 International conference on (vol. 3, pp. 3–585). IEEE.

  11. Soro, S., & Heinzelman, W. (2009). A survey of visual sensor networks. Advances in Multimedia. doi:10.1155/2009/640386.

  12. Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless multimedia sensor networks. Computer Networks, 51(4), 921–960.

    Article  Google Scholar 

  13. Yaghmaee, M. H., & Adjeroh, D. A. (2009). Priority-based rate control for service differentiation and congestion control in wireless multimedia sensor networks. Computer Networks, 53(11), 1798–1811.

    Article  MATH  Google Scholar 

  14. AlNuaimi, M., Sallabi, F., & Shuaib, K. (2011, April). A survey of wireless multimedia sensor networks challenges and solutions. In Innovations in information technology (IIT). 2011 international conference on (pp. 191–196). IEEE.

  15. Tavli, B., Bicakci, K., Zilan, R., & Barcelo-Ordinas, J. M. (2012). A survey of visual sensor network platforms. Multimedia Tools and Applications, 60(3), 689–726.

    Google Scholar 

  16. Misra, S., Reisslein, M., & Xue, G. (2008). A survey of multimedia streaming in wireless sensor networks. Communications Surveys & Tutorials, IEEE, 10(4), 18–39.

    Article  Google Scholar 

  17. Sharif, A., Potdar, V., & Chang, E. (2009). Wireless multimedia sensor network technology: A survey. In The 7th IEEE international conference on industrial informatics INDIN (pp. 606–613).

  18. Sharif, A., Potdar, V., & Chang, E. (2009, June). Wireless multimedia sensor network technology: A survey. In Industrial informatics, 2009. INDIN 2009. 7th IEEE international conference on (pp. 606–613). IEEE.

  19. Chew, L. W., Ang, L. M., & Seng, K. P. (2008, August). Survey of image compression algorithms in wireless sensor networks. In Information technology, 2008. ITSim 2008. International symposium on (vol. 4, pp. 1–9). IEEE.

  20. Wang, Y. C. (2012). Data Compression Techniques in Wireless Sensor Networks. In M. L. Howard (Ed.), Pervasive Computing, New York: Nova Science Publishers, Inc.

  21. Srisooksai, T., Keamarungsi, K., Lamsrichan, P., & Araki, K. (2012). Practical data compression in wireless sensor networks: A survey. Journal of Network and Computer Applications, 35(1), 37–59.

    Article  Google Scholar 

  22. Huang, F., & Liang, Y. (2007, October). Towards energy optimization in environmental wireless sensor networks for lossless and reliable data gathering. In Mobile adhoc and sensor systems, 2007. MASS 2007. IEEE internatonal conference on (pp. 1–6). IEEE.

  23. Liang, Y., & Peng, W. (2010). Minimizing energy consumptions in wireless sensor networks via two-modal transmission. ACM SIGCOMM Computer Communication Review, 40(1), 12–18.

    Article  Google Scholar 

  24. Marcelloni, F., & Vecchio, M. (2010). Enabling energy-efficient and lossy-aware data compression in wireless sensor networks by multi-objective evolutionary optimization. Information Sciences, 180(10), 1924–1941.

    Article  Google Scholar 

  25. Ferrigno, L., Marano, S., Paciello, V., & Pietrosanto, A. (2005, July). Balancing computational and transmission power consumption in wireless image sensor networks. In Virtual environments, human–computer interfaces and measurement systems, 2005. VECIMS 2005. Proceedings of the 2005 IEEE international conference on (6 pp.). IEEE.

  26. Duran-Faundez, C., & Lecuire, V. (2008, April). Error resilient image communication with chaotic pixel interleaving for wireless camera sensors. In Proceedings of the workshop on real-world wireless sensor networks (pp. 21–25). ACM.

  27. Wu, M., & Chen, C. W. (2003, October). Multiple bitstream image transmission over wireless sensor networks. In Sensors, 2003. Proceedings of IEEE (vol. 2, pp. 727–731). IEEE.

  28. Wu, H., & Abouzeid, A. A. (2004, June). Power aware image transmission in energy constrained wireless networks. In Computers and communications, 2004. Proceedings. ISCC 2004. Ninth international symposium on (vol. 1, pp. 202–207). IEEE.

  29. Mammeri, A., Khoumsi, A., Ziou, D., & Hadjou, B. (2008, August). Modeling and adapting JPEG to the energy requirements of VSN. In Computer communications and networks, 2008. ICCCN’08. Proceedings of 17th international conference on (pp. 1–6). IEEE.

  30. Mammeri, A., Khoumsi, A., Ziou, D., & Hadjou, B. (2008). Energy-aware JPEG for visual sensor networks. The Maghrebian conference on software engineering and artificial intelligence MCSEAI, 2008, (pp. 1–7).

  31. Mammeri, A., Khoumsi, A., Ziou, D., & Hadjou, B. (2008, October). Energy-efficient transmission scheme of JPEG images over Visual Sensor Networks. In Local computer networks, 2008. LCN 2008. 33rd IEEE conference on (pp. 639–647). IEEE.

  32. Makkaoui, L., Lecuire, V., & Moureaux, J. M. (2010, July). Fast zonal DCT-based image compression for wireless camera sensor networks. In Image processing theory tools and applications (IPTA), 2010 2nd international conference on (pp. 126–129). IEEE.

  33. Wagner, R., Nowak, R., & Baraniuk, R. (2003, September). Distributed image compression for sensor networks using correspondence analysis and super-resolution. In Image processing, 2003. ICIP 2003. Proceedings. 2003 international conference on (vol. 1, pp. 1–597). IEEE.

  34. Boulgouris, N. V., & Strintzis, M. G. (2002). A family of wavelet-based stereo image coders. IEEE Transactions on Circuits and Systems for Video Technology, 12(10), 898–903.

    Article  Google Scholar 

  35. Wu, H., & Abouzeid, A. A. (2005). Energy efficient distributed image compression in resource-constrained multihop wireless networks. Computer Communications, 28(14), 1658–1668.

    Article  Google Scholar 

  36. Wang, A., & Chandrakasan, A. (2001). Energy efficient system partitioning for distributed wireless sensor networks. In Acoustics, speech, and signal processing, 2001. Proceedings. (ICASSP’01). 2001 IEEE international conference on (vol. 2, pp. 905–908). IEEE.

  37. Pradhan, S. S., Kusuma, J., & Ramchandran, K. (2002). Distributed compression in a dense microsensor network. Signal Processing Magazine, IEEE, 19(2), 51–60.

    Article  Google Scholar 

  38. Lu, Q., Luo, W., Wang, J., & Chen, B. (2008). Low-complexity and energy efficient image compression scheme for wireless sensor networks. Computer Networks, 52(13), 2594–2603.

    Article  MATH  Google Scholar 

  39. Nasri, M., Helali, A., Sghaier, H., & Maaref, H. (2010, March). Adaptive image transfer for wireless sensor networks (WSNs). In Design and technology of integrated systems in nanoscale era (DTIS), 2010 5th international conference on (pp. 1–7). IEEE.

  40. Nasri, M., Helali, A., Sghaier, H., & Maaref, H. (2010, October). Energy-efficient wavelet image compression in wireless sensor network. In Communication in wireless environments and ubiquitous systems: New challenges (ICWUS), 2010 international conference on (pp. 1–7). IEEE.

  41. Nasri, M., Helali, A., Sghaier, H., & Maaref, H. (2011). Adaptive image compression technique for wireless sensor networks. Computers & Electrical Engineering, 37(5), 798–810.

    Article  Google Scholar 

  42. Wu, H., & Abouzeid, A. A. (2004, August). Energy efficient distributed JPEG2000 image compression in multihop wireless networks. In Proceedings of IEEE workshop on applications and services in wireless networks (pp. 152–160).

  43. Huu, P. N., Tran-Quang, V., & Miyoshi, T. (2010, July). Image compression algorithm considering energy balance on wireless sensor networks. In 2010 8th IEEE international conference on industrial informatics (INDIN) (pp. 1005–1010). Osaka, Japan: IEEE.

  44. Dong, H., Lu, J., & Sun, Y. (2006). A distributed wavelet-based image coding for wireless sensor networks. In Intelligent Control and Automation, Lecture Notes in Control and Information Sciences (vol. 344, pp. 72–82). Berlin, Heidelberg: Springer.

  45. Jamali, M., Zokaei, S., & Rabiee, H. R. (2010, June). A new approach for distributed image coding in wireless sensor networks. In Computers and communications (ISCC), 2010 IEEE symposium on (pp. 563–566). IEEE.

  46. Devaguptapu, D., & Krishnamachari, B. (2003, April). Applications of localized image processing techniques in wireless sensor networks. In Proceedings of SPIE (vol. 5090, pp. 247–256).

  47. Ganesan, D., Greenstein, B., Perelyubskiy, D., Estrin, D., & Heidemann, J. (2003, November). An evaluation of multi-resolution storage for sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp. 89–102). ACM.

  48. Servetto, S. D. (2003, September). Sensing Lena-Massively distributed compression of sensor images. In Image processing, 2003. ICIP 2003. Proceedings. 2003 international conference on (vol. 1, pp. I–613). IEEE.

  49. Barr, K. C., & Asanović, K. (2006). Energy-aware lossless data compression. ACM Transactions on Computer Systems (TOCS), 24(3), 250–291.

    Article  Google Scholar 

  50. Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  51. Subramanya, A. (2001). Image compression technique. Potentials, IEEE, 20(1), 19–23.

    Article  MathSciNet  Google Scholar 

  52. Yang, M., & Bourbakis, N. (2005, August). An overview of lossless digital image compression techniques. In Circuits and systems, 2005. 48th Midwest symposium on (pp. 1099–1102). IEEE.

  53. Jain, A. K. (1981). Image data compression: A review. Proceedings of the IEEE, 69(3), 349–389.

    Article  Google Scholar 

  54. Taubman, D., & Marcellin, M. (2001). JPEG2000: Image compression fundamentals, standards and practice. Boston: Kluwer Academic Publishers.

    Google Scholar 

  55. Shapiro, J. M. (1993). Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, 41(12), 3445–3462.

    Article  MATH  Google Scholar 

  56. Said, A., & Pearlman, W. A. (1996). A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and systems for video technology, 6(3), 243–250.

    Article  Google Scholar 

  57. Taubman, D. (2000). High performance scalable image compression with EBCOT. IEEE Transactions on Image Processing, 9(7), 1158–1170.

    Article  Google Scholar 

  58. Tseng, H. W., & Chang, C. (2005). A very low bit rate image compressor using transformed classified vector quantization. Informatica-LJUBLJANA-, 29(3), 335.

    MathSciNet  Google Scholar 

  59. Loeffler, C., Ligtenberg, A., & Moschytz, G. S. (1989, May). Practical fast 1-D DCT algorithms with 11 multiplications. In Acoustics, speech, and signal processing, 1989. ICASSP-89, 1989 international conference on (pp. 988–991). IEEE.

  60. Feig, E., & Winograd, S. (1992). Fast algorithms for the discrete cosine transform. IEEE Transactions on Signal Processing, 40(9), 2174–2193.

    Article  MATH  Google Scholar 

  61. Jeong, H., Kim, J., & Cho, W. K. (2004). Low-power multiplierless DCT architecture using image correlation. IEEE Transactions on Consumer Electronics, 50(1), 262–267.

    Article  Google Scholar 

  62. Said, A., & Pearlman, W. A. (1993, May). Image compression using the spatial-orientation tree. In Circuits and systems, 1993, ISCAS’93, 1993 IEEE international symposium on (pp. 279–282). IEEE.

  63. Zhang, H., & Fritts, J. (2004, January). EBCOT coprocessing architecture for JPEG 2000. In Proceedings of SPIE (vol. 5308, pp. 1333–1340).

  64. Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693.

    Article  MATH  Google Scholar 

  65. Chrysafis, C., & Ortega, A. (2000). Line-based, reduced memory, wavelet image compression. IEEE Transactions on Image Processing, 9(3), 378–389.

    Article  MATH  MathSciNet  Google Scholar 

  66. Lian, C. J., Chen, K. F., Chen, H. H., & Chen, L. G. (2003). Analysis and architecture design of block-coding engine for EBCOT in JPEG 2000. IEEE Transactions on Circuits and Systems for Video Technology, 13(3), 219–230.

    Article  Google Scholar 

  67. Lee, D. G., & Dey, S. (2002). Adaptive and energy efficient wavelet image compression for mobile multimedia data services. In Communications, 2002. ICC 2002. IEEE international conference on (vol. 4, pp. 2484–2490). IEEE.

  68. Parisot, C., Antonini, M., Barlaud, M., Lambert-Nebout, C., Latry, C., & Moury, G. (2000). On board strip-based wavelet image coding for future space remote sensing missions. In Geoscience and remote sensing symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 international (vol. 6, pp. 2651–2653). IEEE.

  69. Wheeler, F. W., & Pearlman, W. A. (2000). SPIHT image compression without lists. In Acoustics, speech, and signal processing, 2000. ICASSP’00. Proceedings. 2000 IEEE international conference on (vol. 6, pp. 2047–2050). IEEE.

  70. Lin, W. K., & Burgess, N. (1998, November). Listless zerotree coding for color images. In Signals, systems and computers, 1998. Conference record of the thirty-second asilomar conference on (vol. 1, pp. 231–235). IEEE.

  71. Bhattar, R. K., Ramakrishnan, K. R., & Dasgupta, K. S. (2002). Strip based coding for large images using wavelets. Signal Processing: Image Communication, 17(6), 441–456.

    Google Scholar 

  72. Li Wern, C., Wai Chong, C., Li-minn, A., & Kah Phooi, S. (2009). Very low-memory wavelet compression architecture using strip-based processing for implementation in wireless sensor networks. EURASIP Journal on Embedded Systems, doi:10.1155/2009/479281.

  73. Chang, W. H., Lee, Y. S., Peng, W. S., & Lee, C. Y. (2001, May). A line-based, memory efficient and programmable architecture for 2D DWT using lifting scheme. In Circuits and systems, 2001. ISCAS 2001. The 2001 IEEE international symposium on (vol. 4, pp. 330–333). IEEE.

  74. Hadjou, B., Mammeri, A., & Khoumsi, A. (2011, April). Determining suitable wavelet filters for visual sensor networks. In Electronics, communications and photonics conference (SIECPC), 2011 Saudi international (pp. 1–5). IEEE.

  75. Dia, D., Zeghid, M., Saidani, T., Atri, M., Bouallegue, B., Machhout, M., & Tourki, R. (2009). Multi-level discrete wavelet transform architecture design. In Proceedings of the world congress on engineering (vol. 1).

  76. Palero, R. J. C., Gironés, R. G., & Cortes, A. S. (2006). A novel FPGA architecture of a 2-D wavelet transform. The Journal of VLSI Signal Processing, 42(3), 273–284.

    Article  MATH  Google Scholar 

  77. Benkrid, A., Benkrid, K., & Crookes, D. (2003, April). Design and implementation of a generic 2D orthogonal discrete wavelet transform on FPGA. In Field-programmable custom computing machines, 2003. FCCM 2003. 11th annual IEEE symposium on (pp. 162–172). IEEE.

  78. Acharya, T., & Chakrabarti, C. (2006). A survey on lifting-based discrete wavelet transform architectures. The Journal of VLSI Signal Processing, 42(3), 321–339.

    Article  MATH  Google Scholar 

  79. Angelopoulou, M. E., Masselos, K., Cheung, P. Y., & Andreopoulos, Y. (2008). Implementation and comparison of the 5/3 lifting 2D discrete wavelet transform computation schedules on FPGAs. Journal of Signal Processing Systems, 51(1), 3–21.

    Article  Google Scholar 

  80. Kaddachi, M. L., Soudani, A., Lecuire, V., Torki, K., Makkaoui, L., & Moureaux, J. M. (2012). Low power hardware-based image compression solution for wireless camera sensor networks. Computer Standards & Interfaces, 34(1), 14–23.

    Article  Google Scholar 

  81. Kaddachi, M. L., Soudani, A., Nouira, I., Lecuire, V., & Torki, K. (2010, December). Efficient hardware solution for low power and adaptive image-compression in WSN. In Electronics, circuits, and systems (ICECS), 2010 17th IEEE international conference on (pp. 583–586). IEEE.

  82. Hill, J., Horton, M., Kling, R., & Krishnamurthy, L. (2004). The platforms enabling wireless sensor networks. Communications of the ACM, 47(6), 41–46.

    Article  Google Scholar 

  83. Rahimi, M., Baer, R., Iroezi, O. I., Garcia, J. C., Warrior, J., Estrin, D., & Srivastava, M. (2005, November). Cyclops: In situ image sensing and interpretation in wireless sensor networks. In Proceedings of the 3rd international conference on embedded networked sensor systems (pp. 192–204). ACM.

  84. Feng, W. C., Kaiser, E., Feng, W. C., & Baillif, M. L. (2005). Panoptes: Scalable low-power video sensor networking technologies. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP), 1(2), 151–167.

    Article  Google Scholar 

  85. Boice, J., Lu, X., Margi, C., Stanek, G., Zhang, G., Manduchi, R., & Obraczka, K. (2006, October). Meerkats: A power-aware, self-managing wireless camera network for wide area monitoring. In Distributed smart cameras workshop-SenSys06.

  86. Rowe, A., Goel, D., & Rajkumar, R. (2007, December). Firefly mosaic: A vision-enabled wireless sensor networking system. In Real-time systems symposium, 2007. RTSS 2007. 28th IEEE international (pp. 459–468). IEEE.

  87. Chen, P., Ahammad, P., Boyer, C., Huang, S. I., Lin, L., Lobaton, E., et al. (2008, September). CITRIC: A low-bandwidth wireless camera network platform. In Distributed smart cameras, 2008. ICDSC 2008. Second ACM/IEEE international conference on (pp. 1–10). IEEE.

  88. Zhang, M., & Cai, W. (2010, July). Vision mesh: A novel video sensor networks platform for water conservancy engineering. In Computer science and information technology (ICCSIT), 2010 3rd IEEE international conference on (vol. 4, pp. 106–109). IEEE.

  89. Hengstler, S., Prashanth, D., Fong, S., & Aghajan, H. (2007, April). MeshEye: A hybrid-resolution smart camera mote for applications in distributed intelligent surveillance. In Information processing in sensor networks, 2007. IPSN 2007. 6th international symposium on (pp. 360–369). IEEE.

  90. Kerhet, A., Magno, M., Leonardi, F., Boni, A., & Benini, L. (2007). A low-power wireless video sensor node for distributed object detection. Journal of Real-Time Image Processing, 2(4), 331–342.

    Article  Google Scholar 

  91. Teixeira, T., Culurciello, E., Park, J. H., Lymberopoulos, D., Barton-Sweeney, A., & Savvides, A. (2006, April). Address-event imagers for sensor networks: Evaluation and modeling. In Proceedings of the 5th international conference on Information processing in sensor networks (pp. 458–466). ACM.

  92. Rowe, A., Goode, A., Goel, D., & Nourbakhsh, I. (2007, May). CMUcam3: An open programmable embedded vision sensor. In International conferences on intelligent robots and systems.

  93. Osman, H., Mahjoup, W., Nabih, A., & Aly, G. M. (2007, November). JPEG encoder for low-cost FPGAs. In Computer engineering and systems, 2007. ICCES’07. International conference on (pp. 406–411). IEEE.

  94. Agostini, L. V., Silva, I. S., & Bampi, S. (2007). Multiplierless and fully pipelined JPEG compression soft IP targeting FPGAs. Microprocessors and Microsystems, 31(8), 487–497.

    Article  Google Scholar 

  95. Mallireddy, S. R., & Commuri, S. (2010, April). Run time compression of image data in wireless sensor networks. In Networking, sensing and control (ICNSC), 2010 international conference on (pp. 512–517). IEEE.

  96. Papadonikolakis, M., Pantazis, V., & Kakarountas, A. P. (2007, April). Efficient high-performance ASIC implementation of JPEG-LS encoder. In Design, automation and test in Europe conference and exhibition, 2007. DATE’07 (pp. 1–6). IEEE.

  97. Zhou, R., Liu, L., Yin, S., Luo, A., Chen, X., & Wei, S. (2010, May). A VLSI design of sensor node for wireless image sensor network. In Circuits and systems (ISCAS), proceedings of 2010 IEEE international symposium on (pp. 149–152). IEEE.

  98. Alam, M., Rahman, C. A., Badawy, W., & Jullien, G. (2003, June). Efficient distributed arithmetic based dwt architecture for multimedia applications. In System-on-chip for real-time applications, 2003. Proceedings. The 3rd IEEE international workshop on (pp. 333–336). IEEE.

  99. Ritter, J., & Molitor, P. (2001, February). A pipelined architecture for partitioned DWT based lossy image compression using FPGA’s. In Proceedings of the 2001 ACM/SIGDA ninth international symposium on field programmable gate arrays (pp. 201–206). ACM.

  100. Kotteri, K. A., Barua, S., Bell, A. E., & Carletta, J. E. (2005). A comparison of hardware implementations of the biorthogonal 9/7 DWT: Convolution versus lifting. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(5), 256–260.

    Article  Google Scholar 

  101. Martina, M., & Masera, G. (2005, September). Low-complexity, efficient 9/7 wavelet filters implementation. In Image processing, 2005. ICIP 2005. IEEE international conference on (vol. 3, pp. III–1000). IEEE.

  102. Villasenor, J. D., Belzer, B., & Liao, J. (1995). Wavelet filter evaluation for image compression. IEEE Transactions on Image Processing, 4(8), 1053–1060.

    Article  Google Scholar 

  103. Wang, J., & Zhang, F. (2010, June). Study of the Image Compression based on SPIHT Algorithm. In Intelligent computing and cognitive informatics (ICICCI), 2010 international conference on (pp. 130–133). IEEE.

  104. Jizheng, X., W. Feng, et al. (2008). Directional lapped transforms for image coding. In Data compression conference, 2008. DCC 2008.

  105. Winkler, S. (2005). Digital video quality: Vision models and metrics. New York: Wiley.

    Book  Google Scholar 

  106. Ruiz, G. A., Michell, J. A., & Burón, A. (2006). High throughput parallel-pipeline 2-D DCT/IDCT processor chip. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 45(3), 161–175.

    Article  Google Scholar 

  107. Chew, L. W., Chia, W. C., Ang, L. M., & Seng, K. P. (2009). Very lowmemory wavelet compression architecture using strip-based processing for implementation in wireless sensor networks. Eurasip Journal on Embedded Systems, 2009, 479281.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khamees Khalaf Hasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasan, K.K., Ngah, U.K. & Salleh, M.F.M. Efficient Hardware-Based Image Compression Schemes for Wireless Sensor Networks: A Survey. Wireless Pers Commun 77, 1415–1436 (2014). https://doi.org/10.1007/s11277-013-1588-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1588-8

Keywords

Navigation