Skip to main content
Log in

Gain Enhancement of a Tetra-band Square-Loop Patch Antenna Using an AMC–PEC Substrate and a Superstrate

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a high gain tetra-band microstrip patch antenna fed by a modified L-shaped strip has been designed, simulated and measured. The antenna consists of three concentric square-loop patches to support four operating modes and cover WLAN/Bluetooth, WiMAX, Mobile/Fixed satellite services, and WLAN/V2X commercial applications. In order to enhance gain of the antenna, the incorporating effect of the antenna with a superstrate and an artificial magnetic conductor (AMC)–perfect electric conductor (PEC) ground plane is investigated. It is demonstrated that the antenna gain is enhanced significantly when the superstrate is placed over the AMC–PEC ground plane based antenna. It shows a realized gain of 10.1 dBi at the first frequency band and achieves an increase in the gain by 7.5 dB. One outstanding result of the proposed design is that the air thickness between the square loops and the superstrate is about λ/40, because of the AMC–PEC ground plane. The proposed antenna has a low profile with overall dimensions of 0.64λ × 0.64λ × 0.08λ for the frequency at 2.42 GHz. A prototype of the antenna is fabricated and tested to verify the design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Balanis, C. A. (2005). Antenna theory: Analysis and design (3rd ed.). Hoboken: Wiley.

    Google Scholar 

  2. Romeu, J., & Soler, J. (2001). Generalized Sierpinski fractal multiband antenna. IEEE Transactions on Antennas and Propagation, 49, 1237–1239.

    Article  Google Scholar 

  3. Nashaat, D. M., & Elsadek, H. (2008). Multiband and UWB V-shaped antenna configuration for wireless communications applications. IEEE Antennas and Wireless Propagation Letters, 7, 89–91.

    Article  Google Scholar 

  4. Jin, P., & Ziolkowski, R. W. (2010). Multiband extensions of the electrically small, near-field resonant parasitic z antenna. IET Microwaves, Antennas & Propagation, 4, 1016–1025.

    Article  Google Scholar 

  5. Nakano, H., Fukasawa, M., & Yamauchi, J. (2002). Discrete multiloop, modified multiloop, and plate-loop antennas-multifrequency and wideband VSWR characteristics. IEEE Transactions on Antennas and Propagation, 50(3), 371–378.

    Article  Google Scholar 

  6. Abbasi, N. A., & Langley, R. J. (2011). Multiband-integrated antenna/artificial magnetic conductor. IET Microwaves, Antennas & Propagation, 5(6), 711–717.

    Article  Google Scholar 

  7. Prakash, P., Abegaonkar, M. P., Basu, A., & Koul, S. K. (2013). Gain enhancement of a CPW-fed monopole antenna using polarization-insensitive AMC structure. IEEE Antennas and Wireless Propagation Letters, 12, 1315–1318.

    Article  Google Scholar 

  8. Nishiyama, E., Aikawa, M., & Egashira, S. (2004). Stacked microstrip antenna for wideband and high gain. IEE Proceedings—Microwave Antennas Propagation, 151(2), 143–148.

    Article  MATH  Google Scholar 

  9. Sievenpiper, D., Zhang, L., Jimenez Broas, R. F., Alexopoulos, N. G., & Yablonovitch, E. (1999). High impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microwave Theory Techn, 47, 2059–2074.

    Article  Google Scholar 

  10. Goussetis, G., Feresidis, A. P., & Vardaxoglou, J. C. (2006). Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate. IEEE Transactions on Antennas and Propagation, 54, 82–89.

    Article  Google Scholar 

  11. Oh, S. S., & Shafai, L. (2006). Artificial magnetic conductor using split ring resonators and its applications to antennas. Microwave and Optical Technology Letters, 48, 329–334.

    Article  Google Scholar 

  12. Egashira, S., & Nishiyama, E. (1996). Stacked microstrip antenna with wide bandwidth and high gain. IEEE Transactions on Antennas and Propagation, 44(11), 1533–1534.

    Article  Google Scholar 

  13. Chang, T.-N., & Lin, J.-M. (2011). Enhanced return-loss and flat-gain bandwidths for microstrip patch antenna. IEEE Transactions on Antennas and Propagation, 59(11), 4322–4325.

    Article  Google Scholar 

  14. Feresidis, A. P., Goussetis, G., Wang, S., & Vardaxoglou, J. C. (2005). Artificial magnetic conductor surfaces and their application to low profile high-gain planar antennas. IEEE Transactions on Antennas and Propagation, 53, 209–215.

    Article  Google Scholar 

  15. Qu, D., Shafai, L., & Foroozesh, A. (2006). Improving microstrip patch antenna performance using EBG substrates. IEE Proceedings—Microwave Antennas Propagation, 153(6), 558–563.

    Article  Google Scholar 

  16. Chen, X., Li, L., Liang, C. H., Su, Z. J., & Zhu, C. (2012). Dual-band high impedance surface with mushroom-type cells loaded by symmetric meandered slots. IEEE Transactions on Antennas and Propagation., 60, 4670–4687.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bazrkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arand, B.A., Bazrkar, A. Gain Enhancement of a Tetra-band Square-Loop Patch Antenna Using an AMC–PEC Substrate and a Superstrate. Wireless Pers Commun 84, 87–97 (2015). https://doi.org/10.1007/s11277-015-2595-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2595-8

Keywords

Navigation