Skip to main content
Log in

Design of Finite-Length Precoded EWF Codes for Scalable Video Streaming

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Expanding window fountain (EWF) codes, which can provide unequal erasure protection property, are used as an efficient application-layer forward error correction solution for scalable multimedia data transmission over packet networks. Similar to Raptor codes, precoded EWF codes can provide linear coding complexity. However, only when the information length is large, the precoded EWF codes in previous literatures can achieve good performance. In this paper, we carefully investigate how to choose code rates of precodes and degree distributions of EWF codes for different information lengths. Our proposed precoded EWF coding scheme can achieve superior performance compared to the previous scheme for small and moderate information lengths. Simulation results for the scalable video coding extension of the H.264/AVC standard show that, compared with the previous scheme, our proposed scheme requires a smaller reception overhead to recover the base layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In general, we denote by \(\varepsilon\) the reception overhead in this paper, i.e., with \(N=(1+\varepsilon )k\) received encoded bits at the receiver on the condition of original k information bits at the transmitter, which fulfills the scenarios of both EWF codes and precoded EWF codes throughout the paper.

  2. Note that “overall performance” is a metric for an UEP scheme to compromise the performance of different importance data, e.g., assume that two UEP schemes simultaneously having two importance classes (i.e., MIB and LIB) are denoted by A and B, respectively, compared to A scheme, if B scheme can significantly improve the performance of LIB while in return slight performance degradation for MIB, we conclude that B scheme has better overall performance.

  3. We have also tested several video sequences (e.g., Bus, Foreman, Akiyo), and simulation results show the same trends. So we just discuss the results for Stefan video.

References

  1. Mirrezaei, S., Faez, K., & Yousefi, S. (2014). Towards fountain codes. Wireless Personal Communications, 77(2), 1533–1562.

    Article  Google Scholar 

  2. Luby, M. (2002). LT codes. In Proceedings of the 43rd annual IEEE symposium on foundations of computer science (FOCS), Vancouver, BC, Canada, November (pp. 271–280).

  3. Shokrollahi, A. (2006). Raptor codes. IEEE Transactions on Information Theory, 52(6), 2551–2567.

    Article  MathSciNet  Google Scholar 

  4. Shokrollahi, A., & Luby, M. (2011). Raptor codes. Foundations and trends® in communications and information theory (Vol. 6, 122 p). Boston, MA: Now Publishers Inc.

  5. Etesami, O., & Shokrollahi, A. (2006). Raptor codes on binary memoryless symmetric channels. IEEE Transactions on Information Theory, 52(5), 2033–2051.

    Article  MathSciNet  Google Scholar 

  6. Sivasubramanian, B., & Leib, H. (2008). Fixed-rate Raptor codes over Rician fading channels. IEEE Transactions on Vehicular Technology, 57(6), 3905–3911.

    Article  Google Scholar 

  7. Tian, S., Li, Y., Shirvanimoghaddam, M., & Vucetic, B. (2013). A physical-layer rateless code for wireless channels. IEEE Transactions on Communications, 61(6), 2117–2127.

    Article  Google Scholar 

  8. Taubman, D., & Marcellin, M. (2001). JPEG2000: Image compression fundamentals, standards and practice. Berlin: Kluwer Academic Publishers.

    Google Scholar 

  9. Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology, 17(9), 1103–1120.

    Article  Google Scholar 

  10. Aydinlik, M., & Salehi, M. (2008). Turbo coded modulation for unequal error protection. IEEE Transactions on Communications, 56(4), 555–564.

    Article  Google Scholar 

  11. Rahnavard, N., Pishro-Nik, H., & Fekri, F. (2007). Unequal error protection using partially regular LDPC codes. IEEE Transactions on Communications, 55(3), 387–391.

    Article  Google Scholar 

  12. Gong, C., Yue, G., & Wang, X. (2011). Message-wise unequal error protection based on low-density parity-check codes. IEEE Transactions on Communications, 59(4), 1019–1030.

    Article  Google Scholar 

  13. Arslan, S. S., Cosman, P. C., & Milstein, L. B. (2012). Concatenated block codes for unequal error protection of embedded bit streams. IEEE Transactions on Image Processing, 21(3), 1111–1122.

    Article  MathSciNet  Google Scholar 

  14. Condo, C., Masera, G., & Montuschi, P. (2015). Unequal error protection of memories in LDPC decoders. IEEE Transactions on Computers, 64(10), 2981–2993.

    Article  MathSciNet  Google Scholar 

  15. Rahnavard, N., Vellambi, B. N., & Fekri, F. (2007). Rateless codes with unequal error protection property. IEEE Transactions on Information Theory, 53(4), 1521–1532.

    Article  MathSciNet  Google Scholar 

  16. Hsiao, H.-F., & Ciou, Y.-J. (2014). Layer-aligned multipriority rateless codes for layed video streaming. IEEE Transactions on Multimedia, 24(8), 1395–1404.

    Google Scholar 

  17. Cataldi, P., Grangetto, M., Tillo, T., Magli, E., & Olmo, G. (2010). Sliding window raptor codes for efficient scalable wireless video broadcasting with unequal loss protection. IEEE Transactions on Image Processing, 19(6), 1491–1503.

    Article  MathSciNet  Google Scholar 

  18. Sejdinović, D., Vukobratović, D., Doufexi, A., Šenk, V., & Piechocki, R. J. (2009). Expanding window fountain codes for unequal error protection. IEEE Transactions on Communications, 57(9), 2510–2516.

    Article  Google Scholar 

  19. Vukobratović, D., Stanković, V., Sejdinović, D., Stanković, L., & Xiong, Z. (2009). Scalable video multicast using expanding window fountain codes. IEEE Transactions on Multimedia, 11(6), 1094–1104.

    Article  Google Scholar 

  20. Vukobratović, D., Stanković, V., Stanković, L., & Sejdinović, D. (2009). Precoded EWF codes for unequal error protection of scalable video. In Proceedings of the 5th international ICST mobile multimedia communications conference 2009, London, UK, September.

  21. Stefanović, Č., Vukobratović, D., Chiti, F., Niccolai, L., Crnojević, V., & Fantacci, R. (2011). Urban infrastructure-to-vehicle traffic data dissemination using UEP rateless codes. IEEE Journal on Selected Area in Communications, 29(1), 94–102.

    Article  Google Scholar 

  22. Arslan, S. S., Cosman, P. C., & Milstein, L. B. (2012). Generalized unequal error protection LT codes for progressive data transmission. IEEE Transactions on Image Processing, 21(8), 3586–3597.

    Article  MathSciNet  Google Scholar 

  23. Ahmad, S., Hamzaoui, R., & Al-Akaidi, M. (2011). Unequal error protection using fountain codes with applications to video communication. IEEE Transactions on Multimedia, 13(1), 92–101.

    Article  Google Scholar 

  24. Yen, K.-K., Liao, Y.-C., Chen, C.-L., Zao, J., & Chang, H.-C. (2013). Integrating non-repetitive LT encoders with modifined distribution to achieve unequal erasure protection. IEEE Transactions on Multimedia, 15(8), 2162–2175.

    Article  Google Scholar 

  25. Yuan, L., & An, J. (2010). Design of UEP-Raptor codes over BEC. European Transactions on Telecommunications, 21, 30–34.

    Google Scholar 

  26. Talari, A., & Rahnavard, N. (2012). On the intermediate symbol recovery rate of rateless codes. IEEE Transactions on Communications, 60(5), 1237–1242.

    Article  Google Scholar 

  27. Luby, M., Mitzenmacher, M., & Shokrollahi, A. (1998). Analysis of random processes via and-or tree evaluation. In Proceedings of the 9th annual ACM-SIAM symposium discrete algorithms (SODA), January (pp. 364–373).

  28. Johnson, S. J. (2009). Iterative error correction: Turbo, low-density parity-check and repeat-accumulate codes. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  29. Li, H., & Marsland, I.D. (2008). A comparison of rateless codes at short block lengths. In IEEE international conference on communications (ICC) (pp. 4483–4488).

  30. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  31. Richardson, T., & Urbanke, R. (2008). Modern coding theory. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  32. Hu, X.-Y., Eleftheriou, E., & Arnold, D. M. (2005). Regular and irregular progressive edge-growth tanner graphs. IEEE Transactions on Information Theory, 51(1), 386–398.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partly presented at the IEEE VTC2016-Spring, Nanjing, China, May 2016 and supported by the Fundamental Research Funds for the Central Universities lzujbky-2017-188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Deng, K. & Li, H. Design of Finite-Length Precoded EWF Codes for Scalable Video Streaming. Wireless Pers Commun 97, 4111–4128 (2017). https://doi.org/10.1007/s11277-017-4715-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4715-0

Keywords

Navigation