Skip to main content
Log in

Spiral Shaped Multi Frequency Printed Antenna for Mobile Wireless and Biomedical Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A novel multi frequency printed antenna is presented in this article. This type of antennas is very useful for the wireless world of today. The proposed antenna covers the low frequency biomedical band as well as various mobile wireless bands such as GSM bands, Bluetooth, ZigBee, Wi-Fi, WLAN and LTE bands etc. The antenna has multi resonating point between 0.5 and 5.6 GHz. The antenna is compact and its size is 32 × 40 × 1.6 mm3. Coplanar waveguide (CPW) feed is used to excite this antenna. CPW feed improves the bandwidth of every resonating point between the above said frequency range. A detailed parametric study of the proposed prototype is presented in this paper. The results show that gain is improved from low frequency to high frequency range. The radiation pattern is directional, which is the most important need of biomedical and specific mobile wireless applications, and radiation efficiency is also good. The prototype is designed and simulated using HFSS. Further measured and simulated results are compared and a good impedance match is found between them. Overall this antenna can be used as a module with bunch of wireless applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim, T. H., & Park, D. C. (2005). Compact dual-band antenna with double L-slits for WLAN operations. IEEE Wireless and Antenna Propagation Letters, 4, 249–252.

    Article  Google Scholar 

  2. Augustin, G., Bybi, P. C., Sarin, V. P., Mohanan, P., Aanandan, C. K., & Vasudevan, K. (2008). A compact dual-band planar antenna for DCS-1900/PCS/PHS, WCDMA/IMT-2000, and WLAN applications. IEEE Wireless and Antenna Propagation Letters, 7, 108–111.

    Article  Google Scholar 

  3. Sun, X. L., Liu, L., Cheung, S. W., & Yuk, T. I. (2012). Dual-band antenna with compact radiator for 2.4/5.2/5.8 GHz WLAN applications. IEEE Transactions on Antennas an Propagation, 60(12), 5924–5930.

    Article  Google Scholar 

  4. Nayak, P. B., Endluri, R., Verma, S., & Kumar, P. (2013). Compact dual-band antenna for WLAN applications. In IEEE 24th international symposium on personal, indoor and mobile radio communications: Fundamentals and PHY track (pp. 1381–1385).

  5. Chien, H. Y., Sim, C. Y. D., & Lee, C. H. (2012). Compact size dual-band antenna printed on flexible substrate for WLAN operation. In Proceedings of ISAP2012 (pp. 1047–1050). Nagoya, Japan.

  6. Lin, Y. D., & Chi, P. L. (2005). Tapered bent folded monopole for dual-band wireless local area network (WLAN) systems. IEEE Wireless and Antenna Propagation Letters, 4, 355–357.

    Article  Google Scholar 

  7. Deepu, V., Rohith, K. R., Manoj, J., Suma, M. N., Vasudevan, K., Aanandan, C. K., et al. (2007). Compact uniplanar antenna for WLAN applications”. Electronics Letters, 43(2), 70–72.

    Article  Google Scholar 

  8. Su, C. M., Chen, H. T., & Wong, K. L. (2002). Printed dual-band dipole antenna with U-slotted arms for 2.4/5.2 GHz WLAN operation. Electronics Letters, 38(22), 1308–1309.

    Article  Google Scholar 

  9. Ahn, J., Kim, S., Lee, M. J., & Kim, Y. S. (2012). A compact printed dual-band WLAN with a shorted coupling strip for mobile terminals. In Proceedings of APMC 2012 (pp. 314–315). December 4–7, 2012, Kaohsiung, Taiwan.

  10. Mahatthanajatuphat, C., Akkaraekthalin, P., Saleekaw, S., & Krairiksh, M. (2009). A bidirectional multiband antenna with modified fractal slot fed by CPW. Progress in Electromagnetics Research, PIER, 95, 59–72.

    Article  Google Scholar 

  11. Sedghi, M. S., Moghadasi, M. N., & Zarrabi, F. B. (2016). A dual band fractal slot antenna loaded with jerusalem crosses for wireless and WiMAX communications. Progress in Electromagnetics Research Letters, 61, 19–24.

    Article  Google Scholar 

  12. Reddy, G. S., Chittora, A., Kharche, S., Mishra, S., & Mukherjee, J. (2013). Bluetooth/UWB dualband planar diversity antenna with WiMAX and WLAN band notch characteristics. Progress in Electromagnetics Research B, 54, 303–319.

    Article  Google Scholar 

  13. Jaglan, N., Kanaujia, B. K., Gupta, S. D., & Srivastava, S. (2016). Tripple band notched UWB antenna design using electromagnetic bandgap structures. Progress in Electromagnetics Research C, 66, 139–147.

    Article  Google Scholar 

  14. Atallah, H. A., Rahman, A. B. A., Yoshitomi, K., & Pokharel, R. K. (2016). Design of dual band notched CPW fed UWB planar antenna using microstrip resonators. Progress in Electromagnetics Research Letters, 59, 51–56.

    Article  Google Scholar 

  15. Chen, Z. X., Ban, Y. L., Chen, Z., Kang, K., & Li, J. L. W. (2014). Two strip narrow frame monopole antenna with a capacitor loaded for hepta band smartphone applications. Progress in Electromagnetics Research, 145, 31–38.

    Article  Google Scholar 

  16. Mandal, K. (2016). Seven band comb shaped Microstrip antenna for wireless systems. Progress in Electromagnetics Research Letters, 59, 15–20.

    Article  Google Scholar 

  17. Li, G., Zhai, H., Li, T., Ma, X., & Liang, C. (2013). Design of a compact UWB antenna integrated with GSM/WCDMA/WLAN bands. Progress in Electromagnetics Research, 136, 409–419.

    Article  Google Scholar 

  18. Koley, S., Murmu, L., & Pal, B. (2016). A pattern reconfigurable antenna for WLAN and WiMAX systems. Progress in Electromagnetics Research C, 66, 183–190.

    Article  Google Scholar 

  19. Li, G., Zhai, H., Li, T., Li, L., & Liang, C. (2013). A compact ultrawideband antenna with triple sense circular polarization. In International symposium on antennas and propagation (ISAP) (Vol. 01, pp. 531–534).

  20. Yang, X., Liu, X., & Song, C. (2015). A triple-band monopole planar antenna for WLAN and WiMAX applications. Frequenz, 69(7–8), 305–309.

    Google Scholar 

  21. Srivastava, K., Kumar, A., & Kanaujia, B. (2016). Design of compact penta-band and hexa-band microstrip antennas. Frequenz, 70(3–4), 101–111.

    Google Scholar 

  22. Kumar, G., & Ray, K. P. (2002). Broadband microstrip antennas. Norwood: Artech House.

    Google Scholar 

  23. Wei, K., Zhang, Z., & Feng, Z. (2012). Design of a wideband horizontally polarized omnidirectional printed loop antenna. IEEE Antennas and Wireless Propagation Letters, 11, 49–52.

    Article  Google Scholar 

  24. Zaker, R., & Abdipour, A. (2010). A very compact ultrawideband printed omnidirectional monopole antenna. IEEE Antennas and Wireless Propagation Letters, 9, 471–473.

    Article  Google Scholar 

  25. Bisharat, D. J., Liao, S., & Xue, Q. (2016). Wideband unidirectional circularly polarized antenna with L-shaped radiator structure. In IEEE Antennas and Wireless Propagation Letters (pp. 1–4) AWPL-12-15-2109.R1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sambit Kumar Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S.K., Badhai, R.K. Spiral Shaped Multi Frequency Printed Antenna for Mobile Wireless and Biomedical Applications. Wireless Pers Commun 98, 2461–2471 (2018). https://doi.org/10.1007/s11277-017-4982-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4982-9

Keywords

Navigation