Skip to main content
Log in

Base Station Sleep and Spectrum Allocation in Heterogeneous Ultra-dense Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

A Correction to this article was published on 12 December 2017

This article has been updated

Abstract

To meet the exponential increasing high data rate demand of mobile users, heterogeneous ultra-dense networks (UDN) is widely seen as an essential technology to provide high-rate transmissions to nearby mobile users. However, the dense and random deployment of small base stations (SBSs) overlaid by macro base stations and their uncoordinated operation lead to important questions about the power consumption and aggressive frequency reuse of heterogeneous UDN. For the problem of huge power consumption and spectrum resource tension in heterogeneous UDN, a joint strategy of SBSs sleep and spectrum allocation is proposed. By using stochastic geometry, the coverage probabilities of base stations and the average ergodic rates of mobile users are derived in each tier and the whole network. In addition, we formulate the coverage probability maximization and power consumption minimization problems, and determine the optimal operating regimes for SBSs, and as well as spectrum allocation. The numerical results show that the SBSs sleep and spectrum allocation can reduce the power consumption and interference of the whole network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 12 December 2017

    There were typos in several equations in the original publication. The corrected equations are specified below. They do not alter the conclusions of the article.

References

  1. Jaber, M., Imran, M. A., Tafazolli, R., & Tukmanov, A. (2016). 5G backhaul challenges and emerging research directions: A survey. IEEE Access, 4, 1743–1766.

    Article  Google Scholar 

  2. Soldani, D., & Manzalini, A. (2015). Horizon 2020 and beyond: On the 5G operating system for a true digital society. IEEE Vehicular Technology Magazine, 10(1), 32–42.

    Article  Google Scholar 

  3. Ge, X., Tu, S., & Mao, G. (2016). 5G ultra-dense cellular networks. IEEE Wireless Communications, 23(1), 72–79.

    Article  Google Scholar 

  4. Moon, S., Kim, Bora, Malik, S., You, C., Liu, H., Kim, J. H., et al. (2015). Interference management with cell selection using cell range expansion and ABS in the heterogeneous network based on LTE-advanced. Wireless Personal Communications, 81(1), 151–160.

    Article  Google Scholar 

  5. Zhang, Tiankui, Zhao, J., An, L., & Liu, D. (2016). Energy efficiency of base station deployment in ultra dense HetNets: A stochastic geometry analysis. IEEE Wireless Communications Letters, 5(2), 184–187.

    Article  Google Scholar 

  6. Saeed, A., Katranaras, E., Dianati, M., & Imran, M. A. (2016). Dynamic femtocell resource allocation for managing inter-tier interference in downlink of heterogeneous networks. IET Communications, 10(6), 641–650.

    Article  Google Scholar 

  7. Liu, C., Natarajan, B., & Xia, H. (2016). Small cell base station sleep strategies for energy efficiency. IEEE Transactions on Vehicular Technology, 65(3), 1652–1661.

    Article  Google Scholar 

  8. Sriram, P. T., Sai, S. K. M., Shankar, T. (2016). A survey on techniques related to base station sleeping in green communication and CoMP analysis. In Proceedings of the 2016 IEEE international conference on engineering and technology (ICETECH) (pp. 1059–1067).

  9. Cheung, W. C., Quek, T. Q. S., & Kountouris, M. (2012). Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks. IEEE Journal on Selected Areas in Communications, 30(3), 561–574.

    Article  Google Scholar 

  10. Oh, E., Krishnamachari, B. (2010). Energy savings through dynamic base station switching in cellular wireless access networks. In Proceedings of the 2010 IEEE global telecommunications conference (GLOBECOM 2010) (pp. 1–15).

  11. Lopez-Perez, D., Guvenc, I., Roche, G., Kountouris, M., Quek, T. Q. S., & Zhang, J. (2011). Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wireless Communications, 18(3), 22–30.

    Article  Google Scholar 

  12. Zheng, J., Cai, Y., Chen, X., Li, R., & Zhang, H. (2015). Optimal base station sleeping in green cellular networks: A distributed cooperative framework based on game theory. IEEE Transactions on Wireless Communications, 14(8), 4391–4406.

    Article  Google Scholar 

  13. Oh, E., & Son, K. (2017). A unified base station switching framework considering both uplink and downlink traffic. IEEE Wireless Communications Letters, 6(1), 30–33.

    Google Scholar 

  14. Oh, E., Son, K., & Krishnamachari, B. (2013). Dynamic base station switching-on/off strategies for green cellular networks. IEEE Transactions on Wireless Communications, 12(5), 2126–2136.

    Article  Google Scholar 

  15. Son, K., Kim, H., Yi, Y., & Krishnamachari, B. (2011). Base station operation and user association mechanisms for energy-delay tradeoffs in green cellular networks. IEEE Journal on Selected Areas in Communications, 28(9), 1525–1536.

    Article  Google Scholar 

  16. Son, K., Guruprasad, R., Nagaraj, S., Sarkar, M., & Dey, S. (2016). Dynamic cell reconfiguration framework for energy conservation in cellular wireless networks. Journal of Communications and Networks, 18(4), 567–579.

    Google Scholar 

  17. Chen, K., Wen, X., Jing, W., Lu, Z., Shao, H., Xu, H. (2016). Simultaneous information and energy transfer in large-scale cellular networks with sleep mode. In Proceedings of the 2016 IEEE international conference on communications (ICC) (pp. 1–6).

  18. Soh, Y. S., Quek, T. Q. S., Kountouris, M., & Shin, H. (2013). Energy efficient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 31(5), 840–850.

    Article  Google Scholar 

  19. Ren, P., & Tao, M. (2014). A decentralized sleep mechanism in heterogeneous cellular networks with QoS constraints. IEEE Wireless Communications Letters, 3(5), 509–512.

    Article  Google Scholar 

  20. Chai, X., Zhang, Z., & Long, K. (2015). Joint spectrum-sharing and base station sleep model for improving energy efficiency of heterogeneous networks. IEEE System Journal. https://doi.org/10.1109/JSYST.2015.2470556.

  21. Deng, N., Zhao, M., Zhu, J., & Zhou, W. (2015). Traffic-aware relay sleep control for joint macro-relay network energy efficiency. Journal of Communications and Networks, 17(1), 47–57.

    Article  Google Scholar 

  22. Cierny, M., Wang, H., Wichman, R., Ding, Z., & Wijting, C. (2013). On number of almost blank subframes in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 12(10), 5061–5073.

    Article  Google Scholar 

  23. Kim, J., Jeon, W. S., & Jeong, D. G. (2016). Base-station sleep management in open-access femtocell networks. IEEE Transactions on Vehicular Technology, 65(5), 3786–3791.

    Article  Google Scholar 

  24. Baccelli, F., & Blaszczyszyn, B. (2009). Stochastic geometry and wireless networks. Paris: Now Publishers.

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission Grant No. KJ1704095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoshou Liu.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s11277-017-5104-4.

Appendices

Appendix A

The coverage probability of the SBSs is given by

$$\begin{aligned} {{p}_{s}}=\eta \cdot p_{s}^{{\text {shared}}}+\left( 1-\eta \right) \cdot p_{s}^{{\text {unshared}}} \end{aligned}$$
(23)

where \(p_{s}^{{\text {shared}}}\) and \(p_{s}^{{\text {unshared}}}\) are the coverage probabilities of SBSs in shared spectrum resource and unshared spectrum resource.

The coverage probability of SBSs in shared spectrum resource is given by

$$\begin{aligned} p_s^{{\mathrm{shared}} }\left( T \right)=& {} {{\mathbb {E}} _r}\left[ {{\mathbb {P}} \left[ {\left. {{{\hbox {SINR}}_s}> T} \right| r} \right] } \right] \nonumber \\=& {} \int _{r> 0} {{\mathbb {P}} \left[ {{\hbox {SINR}_s}> T} \right] } {f_{{r_s}}}\left( r \right) dr\nonumber \\=& {} \int _{r> 0} {{\mathbb {P}} \left[ {\frac{{{P_s}h{r^{ - \alpha }}}}{{{\sigma ^2} + {I_{s,s}} + {I_{s,m}}}}> T} \right] } {f_{{r_s}}}\left( r \right) dr\nonumber \\=& {} 2\pi {p_a}{\lambda _s}\int _{r> 0} {{\mathbb {P}} \left[ {h > \frac{{T{r^\alpha }}}{{{P_s}}}\left( {{\sigma ^2} + {I_{s,s}} + {I_{s,m}}} \right) } \right] \cdot {e^{ - \pi {r^2}{\lambda _s}}}} rdr \end{aligned}$$
(24)

Using the fact that \({{h}_{s}}\sim \exp \left( 1 \right)\), the coverage probability can be expressed as

$$\begin{aligned} {\mathbb {P}} \left[ {h> \frac{{T{r^\alpha }}}{{{P_s}}}\left( {{\sigma ^2} + {I_{s,s}} + {I_{s,m}}} \right) } \right]& {}= {{\mathbb {E}}_{{I_{s,s}},{I_{s,m}}}}\left[ {{\mathbb {P}} \left[ {\left. {h > \frac{{T{r^\alpha }}}{{{P_s}}}\left( {{\sigma ^2} + {I_{s,s}} + {I_{s,m}}} \right) } \right| {I_{s,s}},{I_{s,m}}} \right] } \right] \nonumber \\& {}= {{\mathbb {E}} _{{I_{s,s}},{I_{s,m}}}}\left[ {\exp \left( { - \frac{c}{{{P_s}}}T{r^\alpha }\left( {{\sigma ^2} + {I_{s,s}} + {I_{s,m}}} \right) } \right) } \right] \nonumber \\& {}= {e^{ - \frac{1}{{{P_s}}}T{r^\alpha }{\sigma ^2}}}{\mathcal{L}_{{I_{s,s}}}}\left( {\frac{1}{{{P_s}}}T{r^\alpha }} \right) {\mathcal{L}_{{I_{s,m}}}}\left( {\frac{1}{{{P_s}}}T{r^\alpha }} \right) \end{aligned}$$
(25)

where \({{\mathcal {L}}_{{{I}_{m,m}}}}\left( s \right)\) and \({{\mathcal {L}}_{{{I}_{s,m}}}}\left( s \right)\) are the Laplace transform of random variable \({{I}_{s,s}}\) and \({{I}_{s,m}}\), respectively. Using the definition of the Laplace transform yields

$$\begin{aligned} {\mathcal{L}_{{I_{s,s}}}}\left( s \right) & {}= {{\mathbb {E}} _{{\varPhi _s},\left\{ {{g_{s,i}}} \right\} }}\left[ {\prod \limits _{i \in {\varPhi _s}\backslash \left\{ {{b_{so}}} \right\} } {{{\mathbb {E}}_{{g_{s,i}}}}\left[ {\exp \left( { - s{P_s}{g_{{{s,i}} }}R_{{{s,i}} }^{ - \alpha }} \right) } \right] } } \right] \nonumber \\& {}= {{\mathbb {E}} _{{\varPhi _s}}}\left[ {\prod \limits _{i \in {\varPhi _s}\backslash \left\{ {{b_{so}}} \right\} } {\frac{1}{{1 + s{P_s}R_{{{s,i}} }^{ - \alpha }}}} } \right] \nonumber \\ & {}=\exp \left( { - 2\pi {p_a}{\lambda _s}\int _r^\infty {\left( {1 - \frac{1}{{1 + s{P_s}{v^{ - \alpha }}}}} \right) vdv} } \right) \end{aligned}$$
(26)

Because \({{g}_{s,i}}\sim \exp \left( 1 \right)\), the Laplace transform of random variable \({{I}_{s,s}}\) is obtained. The integration limits are from r to \(\infty\) since the closest interferer is at least at a distance r. Furthermore, plugging into (26) gives Laplace transform of random variable \({{I}_{s,m}}\) in (27).

$$\begin{aligned} {{\mathcal {L}}_{{{I}_{s,s}}}}\left( T{{r}^{\alpha }}/{{P}_{s}} \right) =\exp \left( -\pi {{p}_{a}}{{\lambda }_{s}}{{r}^{2}}\rho \left( T,\alpha \right) \right) \end{aligned}$$
(27)

where \(\rho \left( T,\alpha \right) ={{T}^{2/\alpha }}\int _{{{T}^{-2/\alpha }}}^{\infty }{\frac{1}{1+{{u}^{\alpha /2}}}}du\).

Similarly, using the same approach as in (26), the Laplace transform yields

$$\begin{aligned} {\mathcal{L}_{{I_{s,m}}}}\left( s \right)& {}= {{\mathbb {E}}_{{\varPhi _m},\left\{ {{g_{m,i}}} \right\} }}\left[ {\prod \limits _{i \in {\varPhi _m}} {{{\mathbb {E}}_{{g_{m,i}}}}\left[ {\exp \left( { - s{P_m}{g_{m,i}}R_{m,i}^{ - \alpha }} \right) } \right] } } \right] \nonumber \\& {}= {{\mathbb {E}} _{{\varPhi _m}}}\left[ {\prod \limits _{i \in {\varPhi _m}} {\frac{c}{{c + s{P_m}R_{m,i}^{ - \alpha }}}} } \right] \nonumber \\ & {}= \exp \left( { - 2\pi {\lambda _m}\int _0^\infty {\left( {1 - \frac{c}{{c + s{P_m}{v^{ - \alpha }}}}} \right) vdv} } \right) \end{aligned}$$
(28)

Because \({{g}_{m,i}}\sim \exp \left( c \right)\), the Laplace transform of random variable \({{I}_{s,m}}\) is obtained. Furthermore, plugging \(s=\left( T{{r}^{-\alpha }} \right) /{{P}_{s}}\) into (28) gives Laplace transform of random variable \({{I}_{s,m}}\) in (29).

$$\begin{aligned} {\mathcal{L}_{{I_{s,m}}}}\left( {T{r^\alpha }/{P_s}} \right)& {}= \exp \left( { - 2\pi {\lambda _m}\int _0^\infty {\frac{{\frac{{{P_m}}}{{c{P_s}}}T}}{{\frac{{{P_m}}}{{c{P_s}}}T + {{\left( {v/r} \right) }^\alpha }}}vdv} } \right) \nonumber \\& {}= \exp \left( { - \pi {\lambda _m}{r^2}{{\left( {T{P_m}/\left( {c{P_s}} \right) } \right) }^{2/\alpha }}\int _0^\infty {\frac{1}{{1 + {u^{2/\alpha }}}}du} } \right) \end{aligned}$$
(29)

Because \(\int _{0}^{\infty }{\frac{1}{1{+}{{u}^{\alpha /2}}}}du=1/\left( \alpha /2 \right) {\Gamma } \left( 2/\alpha \right) {\Gamma } \left( 1-2/\alpha \right) =\frac{2\pi }{\alpha \sin \left( 2\pi /\alpha \right) }\), the Laplace transform of random variable \({{I}_{s,m}}\) is further simplified to

$$\begin{aligned} {{\mathcal {L}}_{{{I}_{s,m}}}}\left( T{{r}^{\alpha }}/{{P}_{s}} \right) =\exp \left( -\pi {{\lambda }_{m}}{{r}^{2}}{{\left( T{{P}_{m}}/\left( c{{P}_{s}} \right) \right) }^{2/\alpha }}C\left( \alpha \right) \right) \end{aligned}$$
(30)

where \(C\left( \alpha \right) =\frac{2\pi }{\alpha \sin \left( 2\pi /\alpha \right) }\).

For small cell mobile users in the non-shared spectrum resource, the set of interferers is all the other SBSs. This implies \({{I}_{s,m}}=0\). Therefore, the coverage probability of SBSs is given by

$$\begin{aligned} p_s^{{\mathrm{unshared}} }\left( T \right)& {}= {{\mathbb {E}}_r}\left[ {{\mathbb {P}} \left[ {\left. {\mathrm{{SIN}}{\mathrm{{R}}_s}> T} \right| r} \right] } \right] \nonumber \\& {}= 2\pi {p_a}{\lambda _s}\int _{r> 0} {{\mathbb {P}} \left[ {h> \frac{{T{r^\alpha }}}{{{P_s}}}\left( {{\sigma ^2} + {I_{s,s}}} \right) } \right] \cdot {e^{ - \pi {r^2}{p_a}{\lambda _s}}}} rdr\nonumber \\& {}= 2\pi {p_a}{\lambda _s}\int _{r > 0} {{e^{ - \pi {r^2}{p_a}{\lambda _s}\left( {1 + \rho \left( {T,\alpha } \right) } \right) }}{e^{ - T{r^\alpha }{\sigma ^2}/{P_s}}}} rdr \end{aligned}$$
(31)

The proof of the coverage probability of MBSs is similar to SBSs.

Appendix B

The average ergodic rate of the macrocell mobile user is given by

$$\begin{aligned} {R_m}& {}= {\mathbb {E}} \left[ {\ln \left( {1 + \mathrm{{SI}}{\mathrm{{R}}_m}} \right) } \right] \nonumber \\& {}= \int _{r> 0}{{\mathbb {E}} \left( {\ln \left( {1 + \frac{{{P_m}h{r^{ - \alpha }}}}{{{I_{m,m}} + {I_{m,s}}}}} \right) } \right) } {f_{{r_m}}}\left( r \right) dr\nonumber \\& {}= 2\pi {\lambda _m}\int _{r> 0} {\int _{t> 0} {{\mathbb {P}} \left[ {\ln \left( {1 + \frac{{{P_m}h{r^{ - \alpha }}}}{{{I_{m,m}} + {I_{m,s}}}}} \right)> t} \right] } \cdot {e^{ - \pi {r^2}{\lambda _m}}}dt} rdr\nonumber \\& {}= 2\pi {\lambda _m}\int _{r> 0} {\int _{t> 0} {{\mathbb {P}} \left[ {h> \frac{{\left( {{e^t} - 1} \right) {r^\alpha }}}{{{P_m}}}\left( {{I_{m,m}} + {I_{m,s}}} \right) } \right] \cdot {e^{ - \pi {r^2}{\lambda _m}}}dt} } rdr\nonumber \\& {}= 2\pi {\lambda _m}\int _{r> 0} {\int _{t > 0} {{\mathcal{L}_{{I_{m,m}}}}\left( { - c\frac{{{r^\alpha }}}{{{P_m}}}\left( {{e^t} - 1} \right) } \right) {\mathcal{L}_{{I_{m,s}}}}\left( { - c\frac{{{r^\alpha }}}{{{P_m}}}\left( {{e^t} - 1} \right) } \right) \cdot {e^{ - \pi {r^2}{\lambda _m}}}} } dtrdr \end{aligned}$$
(32)

Similar to \({{\mathcal {L}}_{{{I}_{s,s}}}}\) and \({{\mathcal {L}}_{{{I}_{s,m}}}}\), the Laplace transform of random variable \({{I}_{m,m}}\) and \({{\mathcal {L}}_{{{I}_{m,s}}}}\) are given by

$$\begin{aligned} {{\mathcal {L}}_{{{I}_{m,m}}}}\left( c\left( {{e}^{t}}-1 \right) {{r}^{\alpha }}/{{P}_{m}} \right)= & {} \exp \left( -\pi {{\lambda }_{m}}{{r}^{2}}\rho \left( {{e}^{t}}-1,\alpha \right) \right) \end{aligned}$$
(33)
$$\begin{aligned} {{\mathcal {L}}_{{{I}_{m,s}}}}\left( c\left( {{e}^{t}}-1 \right) {{r}^{\alpha }}/{{P}_{m}} \right)= & {} \exp \left( -\pi {{\lambda }_{s}}{{r}^{2}}{{\left( c\left( {{e}^{t}}-1 \right) \eta {{P}_{s}}/{{P}_{m}} \right) }^{1/\alpha }}C\left( \alpha \right) \right) \end{aligned}$$
(34)

The proof of the average ergodic rate of the small cell mobile user is similar to macrocell mobile user.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Shi, J. Base Station Sleep and Spectrum Allocation in Heterogeneous Ultra-dense Networks. Wireless Pers Commun 98, 3611–3627 (2018). https://doi.org/10.1007/s11277-017-5031-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5031-4

Keywords

Navigation