Skip to main content
Log in

Secrecy Outage Performance Analysis of DF Cognitive Relay Network With Co-channel Interference

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we investigate the secrecy outage performance of the decode-and-forward cognitive relay network with the existence of the co-channel interference, where all nodes are equipped with single antenna and all channels experience Rayleigh fading channels, which are also independent non-identical distribution (i.n.i.d). We also consider the multiple user selection scheme and the single eavesdropper, which could wiretap the information at each hop. There is no evidence of the direct links from the source to the destinations because of the bad conditions. To evaluate the system secrecy performance, we derive the closed form expressions of the secrecy outage probabilities, and the Monte Carlo simulations are also presented to validate the accuracy of the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hussein, J., Ikki, S., & Boussakta, S. (2016). Analysis of opportunistic scheduling in dual-hop multi-user underlay cognitive network in the presence of co-channel interference. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2015.2504244.

    Google Scholar 

  2. Ikki, S., & Aissa, S. (2010). Performance analysis of dual-hop relaying systems in presence of co-channel interference. In Proceedings of IEEE GLOBECOM, Miama, USA (pp. 1–5).

  3. Yu, H., Lee, I.-H., & Stuber, G. L. (2012). Outage probability of decode-and-forward cooperative relaying systems with co-channel interference. IEEE Transactions on Wireless Communications, 11(1), 266–274.

    Article  Google Scholar 

  4. Hussein, J., Ikki, S., Boussakta, S., & Tsimenidis, C. (May. 2015). Performance study of the dual-hop underlay cognitive network in the presence of co-channel interference. In Proceedings of IEEE 81st VTC-Spring, Glasgow, Scotland (pp. 1–5).

  5. Fan, L., Zhang, S., Duong, T. Q., & Karagiannids, G. K. (2016). Secure swith-and-stay combing for cognitive relay networks. IEEE Transactions on Communications, 64(1), 70–82.

    Article  Google Scholar 

  6. Krishna, V. S., & Bhatnagar, M. R. (2016). A joint antenna and path selection techniqe in single-relay-based DF cooperative MIMO networks. IEEE Transactions on Vehicular Technology, 65(3), 1340–1353.

    Article  Google Scholar 

  7. Bhatnagar, M. R., Mallik, R. K., & Tirkkonen, O. (2016). Performance evaluation of best-path selection in a multiple decode-and-forward cooperative system. IEEE Transactions on Vehicular Technology, 65(4), 2722–2728.

    Article  Google Scholar 

  8. Li, D. (2016). Opportunistic DF-AF selection for cognitive relay networks. IEEE Transactions on Vehicular Technology, 65(4), 2790–2796.

    Article  Google Scholar 

  9. Park, J., Jang, C., & Lee, J. H. (2016). Outage analysis of underlay cognitive radio networks with multihop primary transmission. IEEE Communications Letters, 20(4), 800–803.

    Article  Google Scholar 

  10. Kumar, D. P., Babu, M. S., & Prasad, M. S. G. (2016). Suboptimal comparison of AF and DF relaying for fixed target error probability. In Proceedings of ICCCI-2016 , Coimbatore, India (pp. 1–4).

  11. Yang, Q., Ding, J., & Yang, J. (2016). Secrecy outage probability of dual-hop DF cognitive relay networks under interference constraints. In Proceedings of APCC 2016, Yogyakarta, Indonesia (pp. 76-80).

  12. Ghose, S., Kundu, C., & Bose, R. (2016). Secrecy performance of dual-hop decode-and-forward relay system with diversity combing at the eavesdropper. IET Communications, 10(8), 904–914.

    Article  Google Scholar 

  13. Yang, Z., Ding, Z., Fan, P., & Karagiannidis, G. K. (2016). Outage performance of cognitive relay networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3828–3833.

    Article  Google Scholar 

  14. Nguyen D. K., Matthaiou M., Duong T. Q., & Ochi H. (2015). RF energy haversting two-way cognitive DF relaying with transceiver impairments. In Proceedings of IEEE ICC 2015, London, UK (pp. 1970–1976).

  15. Zhong, B., & Zhang, Z. (2018). Opportunistic two-way full-duplex relay selection in underlay cognitive networks. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2016.2514601.

    Google Scholar 

  16. Li, N., Li, Y., Wang, T., Peng, M., & Wang, W. (2015). Full-duplex based spectrum sharing in cognitive two-way relay networks. In Proceedings of IEEE 26th PIMRC , Hong Kong, China (pp. 997–1001).

  17. Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1992). Integrals and series volume 4: Direct laplace transforms. New York: Gordon and Breach Science Publishers.

    MATH  Google Scholar 

  18. Gradshteyn, I. S., & RyzhikI, M. (2007). Table of integrals, series and products (7th ed.). New York: Academic Press.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the National Natural Science Foundation of China under Grant No. 61472343.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiqing Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix 1: Proof of Corollary 1

According to \(Z_1 = \frac{{Id_{nD}^{ - \alpha }}}{{\left( {\rho - 1} \right) {N_{{0_D}}}}}{\left| {{h_{nD}}} \right| ^2} - \frac{{\rho Id_{nE}^{ - \alpha }}}{{\left( {\rho - 1} \right) {N_{{0_E}}}}}{\left| {{h_{nE}}} \right| ^2}\), the CDF of \(Z_1\) can be expressed as

$$\begin{aligned} {F_{Z_1}}\left( z \right)&= \Pr \left( {Z_1< z} \right) \nonumber \\&= \!\Pr \! \left( \! {\frac{{{{\left| {{h_{SR}}} \right| }^2}}}{{1\! +\! \sum \nolimits _{i = 1}^{{L_R}} {{{\left| {{h_{Ri}}} \right| }^2}} }}\! <\! \frac{{\left( {\rho \! -\! 1} \right) \!{N_{0R}}}}{I}z \!+\! \frac{{\rho {N_{0R}}}}{{{N_{0E}}}}{{\left| {{h_{SE}}} \right| }^2}}\! \right) \nonumber \\&= \int _0^\infty {{F_{X_1}}\left( {\frac{{\left( {\rho - 1} \right) {N_{0R}}}}{I}z + \frac{{\rho {N_{0R}}}}{{{N_{0E}}}}y} \right) {f_{Y_1}}\left( y \right) dy}, \end{aligned}$$
(24)

where \(X_1 = \frac{{{{\left| {{h_{SR}}} \right| }^2}}}{{1 + \sum \nolimits _{i = 1}^{{L_R}} {{{\left| {{h_{Ri}}} \right| }^2}} }}\) and \(Y_1 = {\left| {{h_{SE}}} \right| ^2}\). The CDF of \(X_1\) is \({F_{X_1}}\left( x \right) = 1 - \exp \left( { - \frac{1}{{{\beta _1}}}x} \right) {\left( {\frac{{{\beta _1}}}{{{\lambda _R}x + {\beta _1}}}} \right) ^{{L_R}}}\), and the PDF of \(Y_1\) is \({f_{Y_1}}\left( y \right) = \frac{1}{{{\varepsilon _1}}}\exp \left( { - \frac{1}{{{\varepsilon _1}}}y} \right)\). By substituting \({F_{X_1}}\left( x \right)\) and \({f_{Y_1}}\left( y \right)\) into (24), \({F_{Z_1}}\left( z \right)\) can be referenced in Corollary1.

1.2 Appendix 2: Proof of Corollary 2

To solve the integration in (11), we should simplify the Gamma function first according to [18, eq. (8.352.5)],

$$\begin{aligned} \Gamma \left( {1 \!-\! {L_R},{T_3}{T_4}t \!+\! {T_3}{\beta _1}} \right)&= \! -\! \underbrace{\frac{{{{\left( {\! -\! 1} \right) }^{{L_R} + 1}}}}{{\left( {{L_R}\! -\! 1} \right) !}}Ei\left( {\! - \!\left( {{T_3}{T_4}t\! +\! {T_3}{\beta _1}} \right) } \right) }_{{B_1}} \nonumber \\&\quad - \underbrace{\frac{{{{\left( { - 1} \right) }^{{L_R} + 1}}}}{{\left( {{L_R} - 1} \right) !}}\sum \limits _{m = 0}^{{L_R} - 2} {\frac{{{{\left( { - 1} \right) }^m}m!\exp \left( { - \left( {{T_3}{T_4}t + {T_3}{\beta _1}} \right) } \right) }}{{{{\left( {{T_3}{T_4}t + {T_3}{\beta _1}} \right) }^{m + 1}}}}} }_{{B_2}} \nonumber \\&= - {B_1} - {B_2}. \end{aligned}$$
(25)

Next, we can rewrite \({P_1}\) as

$$\begin{aligned} {P_1}&= \underbrace{\int _{\frac{I}{{{P_{\max }}}}}^\infty {\frac{1}{{{\alpha _1}}}\exp \left( { - \frac{1}{{{\alpha _1}}}t} \right) } dt}_{{I_1}}\nonumber \\&\quad + \underbrace{\int _{\frac{I}{{{P_{\max }}}}}^\infty {{T_1}{B_1}\frac{1}{{{\alpha _1}}}\exp \left( {\left( {{T_2} - \frac{1}{{{\alpha _1}}}} \right) t} \right) } dt}_{{I_2}}\nonumber \\&\quad + \underbrace{\int _{\frac{I}{{{P_{\max }}}}}^\infty {{T_1}{B_2}\frac{1}{{{\alpha _1}}}\exp \left( {\left( {{T_2} - \frac{1}{{{\alpha _1}}}} \right) t} \right) } dt}_{{I_3}}\nonumber \\&= {I_1} + {I_2} + {I_3}. \end{aligned}$$
(26)

\({I_1}\) can be easily derived as

$$\begin{aligned} {I_1} = \exp \left( { - \frac{I}{{{\alpha _1}{P_{\max }}}}} \right) . \end{aligned}$$
(27)

\({I_2}\) can be rewritten as

$$\begin{aligned} {I_2}&= \frac{{{T_1}{{\left( { - 1} \right) }^{{L_R} + 1}}}}{{{\alpha _1}\left( {{L_R} - 1} \right) !}}\exp \left( { - \left( {\frac{1}{{{\alpha _1}}} - {T_2}} \right) \frac{I}{{{P_{\max }}}}} \right) \nonumber \\&\quad \times \!\! \underbrace{\int _0^\infty \!\!\! {\exp \left( {\! -\! \left( {\frac{1}{{{\alpha _1}}}\! -\! {T_2}} \right) \!s} \!\right) } Ei\left( { \!-\! {T_3}{T_4}s\! -\! \left( {{T_3}{T_4}{P_{\max }}\! +\! {T_3}{\beta _1}} \right) } \right) ds}_P. \end{aligned}$$
(28)

To obtain the integration P, we should deal with the form of integration \(H=\int _0^\infty {\exp \left( { - ax} \right) Ei\left( { - bx - c} \right) dx}\) first, and we will detailedly illustrate the process. After further derivation, H can be rewritten as

$$\begin{aligned} H&= \frac{1}{b}\exp \left( {\frac{{ac}}{b}} \right) \int _c^\infty {Ei\left( { - t} \right) \exp \left( {\frac{{ - a}}{b}t} \right) } dt\nonumber \\&=\frac{1}{b}\exp \left( {\frac{{ac}}{b}} \right) \left( {\underbrace{\int _0^\infty {Ei\left( { - t} \right) \exp \left( {\frac{{ - a}}{b}t} \right) } dt}_{{H_1}}} \right. \nonumber \\&\quad \left. {- \underbrace{\int _0^c {Ei\left( { - t} \right) \exp \left( {\frac{{ - a}}{b}t} \right) } dt}_{{H_2}}} \right) . \end{aligned}$$
(29)

According to [18, eq. (6.224.1)], we can derive

$$\begin{aligned} {H_1} = - \frac{b}{a}\ln \left( {1 + \frac{a}{b}} \right) . \end{aligned}$$
(30)

In addition, \({H_2}\) can be rewritten as

$$\begin{aligned} {H_2} = \int _0^\infty {\theta \left( {c - t} \right) Ei\left( { - t} \right) \exp \left( { - \frac{a}{b}t} \right) } dt, \end{aligned}$$
(31)

where \({\theta \left( {t} \right) }\) is the unit step function. According to [17, eq. (3.4.1.9)], we can derive

$$\begin{aligned} {H_2} = \frac{b}{a}\left[ {Ei\left( { \!- c\! -\! \frac{{ac}}{b}} \right) \! - \exp \left( { \!- \frac{{ac}}{b}} \right) Ei\left( { - c} \right) \! + \ln \left( {1 \!+ \frac{a}{b}} \right) } \right] . \end{aligned}$$
(32)

Thus, we can obtain the final result H by combining (30) and (31)

$$\begin{aligned} H&=\int _0^\infty {\exp \left( { - ax} \right) Ei\left( { - bx - c} \right) dx}\nonumber \\&= - \frac{1}{a}\left[ {\exp \left( {\frac{{ac}}{b}} \right) Ei\left( { - c - \frac{{ac}}{b}} \right) + Ei\left( { - c} \right) } \right] . \end{aligned}$$
(33)

Thus, according to (33), we can easily obtain the \({I_2}\)

$$\begin{aligned} {I_2}&= \frac{{{T_1}{{\left( { - 1} \right) }^{{L_R} + 1}}}}{{{\alpha _1}\left( {{L_R} - 1} \right) !}}\exp \left( { - \left( {\frac{1}{{{\alpha _1}}} - {T_2}} \right) \frac{I}{{{P_{\max }}}}} \right) \nonumber \\&\quad \times \frac{1}{{{a_1}}}\left[ { - \exp \left( {\frac{{{a_1}{c_1}}}{{{b_1}}}} \right) Ei\left( { - {c_1} - \frac{{{a_1}{c_1}}}{{{b_1}}}} \right) + Ei\left( { - {c_1}} \right) } \right] , \end{aligned}$$
(34)

where the details of \({a_1}\), \({b_1}\) and \({c_1}\) can be referenced the Corollary 2.

Next, \({I_3}\) can be expressed as

$$\begin{aligned} {I_3}&= \underbrace{\sum \nolimits _{m = 0}^{{L_R} - 2} {\frac{{{T_1}{{\left( { - 1} \right) }^{{L_R} + 1}}}}{{{\alpha _1}\left( {{L_R} - 1} \right) !}}{{\left( { - 1} \right) }^m}} m!}_{{G_1}}\nonumber \\&\quad \!\times \!\int _{\frac{I}{{{P_{\max }}}}}^\infty \!\! {\exp \left( {\! -\! \left( {\frac{1}{{{\alpha _1}}}\! -\! {T_2}} \right) t} \right) } \frac{{\exp \left( {\! -\! \left( {{T_3}{T_4}t + {T_3}{\beta _1}} \right) } \right) }}{{{{\left( {{T_3}{T_4}t + {T_3}{\beta _1}} \right) }^{m + 1}}}}dt, \end{aligned}$$
(35)

we can simplify the integration by letting \(s = {T_3}{T_3}t + {T_3}{\beta _1}\), after further derivation, and \({I_3}\) can be rewritten

$$\begin{aligned} {I_3}&= \underbrace{{G_1}\exp \left( {\left( {\frac{1}{{{\alpha _1}}} - {T_2}} \right) \frac{{{\beta _1}}}{{{T_4}}}} \right) \frac{1}{{{T_3}{T_4}}}}_{{G_2}}\nonumber \\&\quad \times \int _{{T_3}{T_4}\frac{I}{{{P_{\max }}}} + {T_3}{\beta _1}}^\infty \! {\frac{{\exp \left( { - \left( {\frac{1}{{{\alpha _1}{T_3}{T_4}}} - \frac{{{T_2}}}{{{T_3}{T_4}}} + 1} \right) s} \right) }}{{{s^{m + 1}}}}} ds. \end{aligned}$$
(36)

Once more, we should let \(y = \frac{1}{{{\alpha _1}{T_3}{T_4}}} - \frac{{{T_2}}}{{{T_3}{T_4}}} + 1\) to calculate the integration. Now, \({I_3}\) is

$$\begin{aligned} {I_3}&= \underbrace{{G_2}{{\left( {\frac{1}{{{\alpha _1}{T_3}{T_4}}} - \frac{{{T_2}}}{{{T_3}{T_4}}} + 1} \right) }^m}}_{{G_3}}\nonumber \\&\quad \times \int _{\left( {\frac{1}{{{\alpha _1}{T_3}{T_4}}} - \frac{{{T_2}}}{{{T_3}{T_4}}} + 1} \right) \left( {{T_3}{T_4}\frac{I}{{{P_{\max }}}} + {T_3}{\beta _1}} \right) }^\infty {\frac{{\exp \left( { - y} \right) }}{{{y^{m + 1}}}}} dy. \end{aligned}$$
(37)

According to \(\Gamma \left( {\alpha ,x} \right) = \int _x^\infty {{e^{ - t}}{t^{\alpha - 1}}dt}\) [18, eq. (8.350.2)], we can derive the closed form of \({I_3}\)

$$\begin{aligned} {I_3} = {G_3}\times \Gamma \left( { \!- m,\left( {\frac{1}{{{\alpha _1}{T_3}{T_4}}} \!-\! \frac{{{T_2}}}{{{T_3}{T_4}}}\! +\! 1} \right) \!\!\left( {\frac{{{T_3}{T_4}I}}{{{P_{\max }}}}\! +\! {T_3}{\beta _1}} \right) }\! \right) . \end{aligned}$$
(38)

Thus, combining the results of \({I_1}\), \({I_2}\) and \({I_3}\), \(P_1\) is shown in (13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Ding, J. & Hu, A. Secrecy Outage Performance Analysis of DF Cognitive Relay Network With Co-channel Interference. Wireless Pers Commun 107, 549–564 (2019). https://doi.org/10.1007/s11277-019-06288-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06288-z

Keywords

Navigation