Skip to main content
Log in

Performance Comparison of Different Modulation Schemes in High-Speed MDM Based Radio Over FSO Transmission Link Under the Effect of Atmospheric Turbulence Using Aperture Averaging

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this work, we investigate the performance comparison of different modulation schemes viz. non return-to-zero (NRZ), alternate mark inversion (AMI), return-to-zero differential phase shift keying (RZ-DPSK), and non return-to-zero differential phase shift keying (NRZ-DPSK) in a 2 × 40 Gbps–40 GHz Radio over free space optics (RoFSO) transmission link incorporating mode division multiplexing (MDM) of two distinct Hermite Gaussian (HG) modes (HG00 and HG01) under the influence of different atmospheric turbulence conditions. Further, the effect of increasing receiver antenna aperture diameter on the link performance is investigated and compared for all four modulation schemes under different turbulence conditions. It is observed that as the strength of the atmospheric turbulence increases, the performance of the link degrades whereas the Bit error rate and the Quality Factor (Q Factor) of the received signal are significantly improved by increasing the receiver aperture diameter. Among the four modulation schemes, link with NRZ-DPSK modulation scheme gives the best performance under the influence of atmospheric turbulence followed by RZ-DPSK, AMI, and NRZ scheme. Also, the proposed NRZ-DPSK scheme based MDM-RoFSO link is investigated under different weather conditions and the results are compared with the previously reported works in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chaudhary, S., Lin, B., Tang, X., Wei, X., Zhou, Z., Lin, C., et al. (2018). 40 Gbps–80 GHz PSK-MDM based Ro-FSO transmission system. Optical and Quantum Electronics,50, 321.

    Article  Google Scholar 

  2. Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys & Tutorials,16(4), 2231–2258.

    Article  Google Scholar 

  3. Singh, J., & Kumar, N. (2013). performance analysis of different modulation format on free space optical communication system. Optik—International Journal of Light and Electron Optics,124(20), 4651–4654.

    Article  Google Scholar 

  4. Mahdy, A., & Deogun, J. S. (2004). Wireless optical communications: A survey. In Proceedings of IEEE Wireless Communications and Networking Conference, (Vol. 4, pp. 2399–2404).

  5. Chaudhary, S., Tang, X., & Wei, X. (2018). Comparison of Laguerre–Gaussian and Donut modes for MDM-WDM in OFDM-Ro-FSO transmission system. AEU—International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2018.06.024.

    Article  Google Scholar 

  6. Majumdar, A. K. (2005). Free-space laser communication performance in the atmospheric channel. Journal of Optical and Fiber Communications Reports,2, 345–396.

    Article  Google Scholar 

  7. Arnon, S., Barry, J. R., Karagiannidis, G. K., Schober, R., & Uysal, M. (Eds.). (2012). Advanced optical wireless communication. Cambridge: Cambridge University Press.

    Google Scholar 

  8. Kaushal, H., & Kaddoum, G. (2017). Optical communication in space: challenges and mitigation techniques. IEEE Communications Surveys & Tutorials,19(1), 57–96.

    Article  Google Scholar 

  9. Amphawan, A., Benjaporn, N., & Nashwan, M. A. S. (2014). Selective excitation of LP01 mode in multimode fiber using solid-core photonic crystal fiber. Journal of Modern Optics,60, 1–9.

    Google Scholar 

  10. Naila, C. B., et al. (2011). Transmission analysis of M-ary phase shift keying multiple-subcarrier modulation signals over radio-onfree-space optical channel with aperture averaging. Optical Engineering,50, 105006–105006–105006–105009.

    Article  Google Scholar 

  11. Kanno, A., et al. (2011). 40 Gb/s W-band (75–110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission. Optics Express,19, B56–B63.

    Article  Google Scholar 

  12. Al-Khafaji, H., et al. (2013). Reducing BER of spectral-amplitude coding optical code-division multiple-access systems by single photodiode detection technique. Journal of the European Optical Society-Rapid Publications,8, 13022-13021-13024.

    Article  Google Scholar 

  13. Tang, X., Ghassemlooy, Z., Rajbhandari, S., Popoola, W. O., & Lee, C. G. (2012). Coherent heterodyne multilevel polarization shift keying with spatial diversity in a free-space optical turbulence channel. Journal of Lightwave Technology,30(16), 2689–2695.

    Article  Google Scholar 

  14. Zhou, H., et al. (2014) Optical power allocation for adaptive WDM transmissions in free space optical networks. In Wireless Communications and Networking Conference (WCNC), IEEE (pp. 2677–2682).

  15. Randel, S., Ryf, R., Sierra, A., Winzer, P. J., Gnauck, A. H., Bolle, C. A., & Essiambre, R. J., et al. (2011). Space-division multiplexing over 10 km of three-mode fiber using coherent 6_ 6 MIMO processing. In Proceedings to Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, 1–3. Los Angeles: IEEE.

  16. Jung, Y., Chen, R., Ismaeel, R., Brambilla, G., Alam, S. U., Giles, I. P., et al. (2013). Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission. Optics Express,21, 24326–24331.

    Article  Google Scholar 

  17. Chaudhary, S., & Amphawan, A. (2018). High speed MDM-Ro-FSO communication system by incorporating AMI scheme. International Journal of Electronics Letters. https://doi.org/10.1080/21681724.2018.1494318.

    Article  Google Scholar 

  18. Chaudhary, S., & Amphawan, A. (2018). High-speed MDM-Ro-FSO system by incorporating spiral-phased Hermite Gaussian modes. Photonic Network Communications. https://doi.org/10.1007/s11107-017-0752-6.

    Article  Google Scholar 

  19. Chaudhary, S., & Amphawan, A. (2018). Selective excitation of LG 00, LG 01, and LG 02 modes by a solid core PCF based mode selector in MDM-Ro-FSO transmission systems. Laser Physics. https://doi.org/10.1088/1555-6611/aabd15.

    Article  Google Scholar 

  20. Chaudhary, S., & Amphawan, A. (2018). Solid core PCF-based mode selector for MDM-Ro-FSO transmission systems. Photonic Network Communications. https://doi.org/10.1007/s11107-018-0778-4.

    Article  Google Scholar 

  21. Ghatak, A., & Thyagarajan, K. (1998). An introduction to fiber optics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  22. Leclerc, O., Lavigne, B., Balmefrezol, E., Brindel, P., Pierre, L., Rouvillain, D., et al. (2003). Optical regeneration at 40 Gb/s and beyond. Journal of Lightwave Technology,21, 2779.

    Article  Google Scholar 

  23. Winzer, P. J., & Essiambre, R.-J. (2006). Advanced optical modulation formats. Proceedings of the IEEE,94, 952–985.

    Article  Google Scholar 

  24. Xie, G., et al. (2011). Effects of atmosphere dominated phase fluctuation and intensity scintillation to DPSK system. In IEEE International Conference on Communication (ICC) (pp. 1–6).

  25. Ghassemlooy, Z., Popoola, W. O. (2010). Terrestrial free space optical communications. In S. A. Fares & F. Adachi (Eds.) Mobile and wireless communication network layer and circuit level design, (pp. 355–392). InTech. Available from http://www.intechopen.com/books/mobile-andwireless-communications-network-layer-and-circuit-level-design/terrestrial-free-space-opticalcommunications.

  26. Mourka, A., et al. (2013). Modal characterization using principal component analysis: Application to bessel, higher-order Gaussian beams and their superposition. Scientific Reports,3, 1422.

    Article  Google Scholar 

  27. Amphawan, A., et al. (2010) Modal decomposition of output field from holographic mode field generation in a multimode fiber channel. In IEEE International Conference on Photon (ICP) (pp. 1–5). Langkawi: IEEE.

  28. Kolev, D. R., Wakamori, K., & Matsumoto, M. (2012). Transmission analysis of OFDM-based services over line-of-sight indoor infrared laserwireless links. Journal of Lightwave Technology,30, 2735–3727.

    Article  Google Scholar 

  29. Kim, I., Mcarthur, B., & Korevaar, E. (2006) Comparison of laser beam propagation at 785 and 1550 nm in fog and haze for optical wireless communications. In Proceedings of SPIE Optical Wireless Communication (vol. 6303).

  30. Kruse, P. W., McGlauchlin, L. D., & McQuistan, R. B. (1962). Elements of infrared technology: Generation, transmission, and detection. Hoboken: Wiley.

    Google Scholar 

  31. Recommendation ITU-R, P.1814, May 2–7.

  32. Andrews, L. C., & Phillips, R. L. (2005). Laser beam propagation through random media (2nd ed.). Bellingham, WA: SPIE Press Book.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehtab Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Malhotra, J. Performance Comparison of Different Modulation Schemes in High-Speed MDM Based Radio Over FSO Transmission Link Under the Effect of Atmospheric Turbulence Using Aperture Averaging. Wireless Pers Commun 111, 825–842 (2020). https://doi.org/10.1007/s11277-019-06886-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06886-x

Keywords

Navigation