Skip to main content
Log in

Implementation of Vertex-Fed Multiband Antenna for Wireless Applications with Frequency Band Reconfigurability Characteristics

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper authors present the design and analysis of split ring resonator based multiband antenna for wireless applications with frequency-band reconfigurable features. The proposed design has octagonal shape SRR structure fed at vertex as radiating section and rectangular shape switchable slotted ground part. The antenna has dimensions of 44 × 39 × 1.6 mm3 and fabricated on FR4 substrate. The proposed structure exhibit hexa operating resonance characteristics at 3.3, 5.0, 5.8, 6.6, 9.9 and 15.9 GHz to cover the wireless standards at lower WiMAX, upper WLAN, super extended C-band, middle X band and lower KU band respectively. Antenna achieve the frequency band reconfigurability characteristics by inserting PIN diode in slotted ground (reclined L-shaped) as triple/hexa resonant bands during OFF/ON switching state of PIN diode. An acceptable gain, stable and consistent radiation patterns with low cross polarization and good impedance matching are obtained at targeted frequency bands of proposed design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ghatak, R., Mishra, R., & Poddar, D. (2008). Perturbed Sierpinski carpet antenna with CPW feed for IEEE 802.11a/b WLAN application. IEEE Antennas and Wireless Propagation Letters, 7, 742–745.

    Article  Google Scholar 

  2. Xu, Y., Jiao, Y. C., & Luan, Y. C. (2012). Compact CPW-fed printed monopole antenna with triple band characteristics for WLAN/WiMAX applications. Electronics Letters, 48(24), 1519–1520.

    Article  Google Scholar 

  3. Sim, C. Y. D., Chen, H. D., Chiu, K. C., & Chao, C. H. (2012). Coplanar waveguide fed slot antenna for wireless local area network/worldwide interoperability for microwave access applications. ET Microwaves, Antennas & Propagation, 6(14), 1529–1535.

    Article  Google Scholar 

  4. Li, X., Shi, X. W., Hu, W., Fei, P., & Yu, J. F. (2013). Compact triband ACS fed monopole antenna employing open ended slots for wireless communication. IEEE Antennas and Wireless Propagation Letters, 12, 388–391.

    Article  Google Scholar 

  5. Basaran, S., Olgun, U., & Sertel, K. (2013). Multiband monopole antenna with complementary split ring resonators for WLAN and WiMAX applications. Electronics Letters, 49(10), 636–638.

    Article  Google Scholar 

  6. Xu, H. X., Wang, G. M., & Qi, M. Q. (2013). A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity. Progress In Electromagnetics Research, 137, 275–292.

    Article  Google Scholar 

  7. Saraswat, R., & Kumar, M. (2016). Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications. Progress In Electromagnetics Research, 65, 65–80.

    Article  Google Scholar 

  8. Rahimi, M., Zarrabi, F. B., Ahmadian, R., Mansouri, Z., & Keshtkar, A. (2014). Miniaturization of antenna for wireless application with difference metamaterial structures. Progress in Electromagnetics Research, 145, 19–29.

    Article  Google Scholar 

  9. Xu, H. X., Wang, G. M., Lv, Y. Y., Qi, M. Q., Gao, X., & Ge, S. (2013). Multi frequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit. Progress in Electromagnetics Research, 137, 703–725.

    Article  Google Scholar 

  10. Alam, T., Samsuzzaman, M., Faruque, M., & Islam, M. T. (2016). A metamaterial unit cell inspired antenna for mobile wireless applications. Microwave and Optical Technology Letters, 58(2), 263–267.

    Article  Google Scholar 

  11. Rajabloo, H., Kooshki, V. A., & Oraizi, H. (2017). Compact microstrip fractal Koch slot antenna with ELC coupling load for triple band application. AEU-International Journal of Electronics and Communications, 73, 144–149.

    Article  Google Scholar 

  12. Varamini, G., Keshtkar, A., & Naser-Moghadasi, M. (2018). Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification. AEU-International Journal of Electronics and Communications, 83, 213–221.

    Article  Google Scholar 

  13. Ali, T., Aw, M. S., & Biradar, R. C. (2018). A fractal quad-band antenna loaded with L-shaped slot and metamaterial for wireless applications. International Journal of Microwave and Wireless Technologies, 10(7), 826–834.

    Article  Google Scholar 

  14. Cao, Y. F., Cheung, S. W., & Yuk, T. I. (2015). A multiband slot antenna for GPS/WiMAX/WLAN systems. IEEE Transactions on Antennas and Propagation, 63(3), 952–958.

    Article  MathSciNet  Google Scholar 

  15. Vinodha, E., & Raghavan, S. (2017). Double stub microstrip fed two element rectangular dielectric resonator antenna for multiband operation. AEU-International Journal of Electronics and Communications, 78, 46–53.

    Article  Google Scholar 

  16. Saraswat, R., & Kumar, M. (2015). A frequency band reconfigurable UWB antenna for high gain applications. Progress in Electromagnetics Research B, 64, 29–45.

    Article  Google Scholar 

  17. Samsuzzaman, M., Islam, T., Abd Rahman, N. H., Faruque, M. R. I., & Mandeep, J. S. (2014). Compact modified swastika shape patch antenna for WLAN/WiMAX applications. International Journal of Antennas and Propagation, 2014, 1–8.

    Google Scholar 

  18. Ahsan, Md R, Islam, T., & Ullah, Md H. (2015). Computational and experimental analysis of high gain antenna for WLAN/WiMAX applications. Journal of Computational Electronics, 14(2), 634–641.

    Article  Google Scholar 

  19. Liu, W. C., Wu, C. M., & Dai, Y. (2011). Design of triple-frequency microstrip-fed monopole antenna using defected ground structure. IEEE Transactions on Antennas and Propagation, 59(7), 2457–2463.

    Article  Google Scholar 

  20. Liu, P., Zou, Y., Xie, B., Liu, X., & Sun, B. (2012). Compact CPW-fed tri-band printed antenna with meandering split-ring slot for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 11, 1242–1244.

    Article  Google Scholar 

  21. Rajeshkumar, V., & Raghavan, S. (2015). A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications. AEU-International Journal of Electronics and Communications, 69(1), 274–280.

    Article  Google Scholar 

  22. Balanis, C. A. (2005). Antenna theory: Analysis and design. Hoboken, NJ: Wiley Inter science.

    Google Scholar 

  23. Alpha Industries. (2014). ALPHA-6355 beamlead PIN diode. Alpha Industries Data sheet. Retrieved March 5, 2018, from http://www.datasheetarchive.com/ALPHA/PINdiode6355-datasheet.html.

  24. Computer Simulation Technology. CST (Microwave Studio MWS) 2014.

  25. Jindal, S., Sivia, J. S., & Bindra, H. S. (2019). Hybrid fractal antenna using meander and minkowski curves for wireless applications. Wireless Personal Communications, 109(4), 1471–1490.

    Article  Google Scholar 

  26. Kaur, M., & Sivia, J. S. (2019). Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm. International Journal of RF and Microwave Computer-Aided Engineering, 30(1), 1–11.

    Google Scholar 

  27. Kaur, M., & Sivia, J. S. (2019). Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO. AEU-International Journal of Electronics and Communications, 99, 14–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumar Saraswat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraswat, R.K., Kumar, M. Implementation of Vertex-Fed Multiband Antenna for Wireless Applications with Frequency Band Reconfigurability Characteristics. Wireless Pers Commun 114, 3197–3210 (2020). https://doi.org/10.1007/s11277-020-07524-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07524-7

Keywords

Navigation