Skip to main content
Log in

Nash Bargaining in Resource Allocation for Cognitive Radio: A Review

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper primarily concentrates on Nash bargaining (NB) which is extensively accepted in cognitive radio (CR) network for allocation of resources. The application domains and effectiveness of NB in wireless networks are discussed systematically. Afterward NB is formulated with step by step computation in sharing of resources for a unique scenario. The base station shares the resource of single primary user (PU) with a particular CR subject to constraint imposed by the PU. The utility function is designed that directly reflects the spectrum utilization of CR. The existence and uniqueness of NB solution is verified analytically. The theoretical and simulation analyses are done to find the competence of NB in sharing of resources to CR satisfying the prerequisites of PU. The variation of Jain’s fairness index with the data rate of CR signifies that the NB provides reasonably high-quality resource allocation to CR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lopez-Benıtez, M., & Casadevall, F. (2013). Time-dimension models of spectrum usage for the analysis, design and simulation of cognitive radio networks. IEEE Transactions on Vehicular Technology, 62(5), 2091–2104.

    Article  Google Scholar 

  2. Das, D., & Das, S. (2017). A novel approach for cognitive radio application in 2.4-GHz ISM band. International Journal of Electronics, 104(5), 792–804. https://doi.org/10.1080/00207217.2016.1244865.

    Article  Google Scholar 

  3. Ergul, O., Shah, G. A., Canberk, B., & Akan, O. B. (2016). Adaptive and cognitive communication architecture for next-generation PPDR systems. IEEE Communications Magazine, 54(4), 92–100. https://doi.org/10.1109/MCOM.2016.7452272.

    Article  Google Scholar 

  4. Mansoor, N., Muzahidul Islam, A. K. M., Zareei, M., Wakabayashi, T., & Komaki, Shozo. (2015). Cognitive radio ad-hoc network architectures: A survey. Wireless Personal Communications, 81, 1117–1142. https://doi.org/10.1007/s11277-014-2175-3.

    Article  Google Scholar 

  5. Khattab, A., & Bayoumi, M. A. (2015). Standardization of cognitive radio networking: A comprehensive survey. Annals of Telecommunications, 70(11), 465–477.

    Article  Google Scholar 

  6. Prasad, R. V., Pawlczak, P., Hoffmeyer, J. A., & Berger, H. S. (2008). Cognitive functionality in next generation wireless networks: Standardization efforts. IEEE Communications Magazine, 46(4), 72–78. https://doi.org/10.1109/MCOM.2008.4481343.

    Article  Google Scholar 

  7. Sun, Y., & Chowdhury, K. R. (2014). Enabling emergency communication through a cognitive radio vehicular network. IEEE Communications Magazine, 52(10), 68–75. https://doi.org/10.1109/MCOM.2014.6917404.

    Article  Google Scholar 

  8. Baldini, G., Karanasios, S., Allen, D., & Vergari, F. (2014). Survey of wireless communication technologies for public safety. IEEE Communications Surveys & Tutorials, 16(2), 619–641. https://doi.org/10.1109/SURV.2013.082713.00034.

    Article  Google Scholar 

  9. Sohul, M. M., Yao, M., Ma, X., Imana, E. Y., Marojevic, V., & Reed, J. H. (2016). Next generation public safety networks: A spectrum sharing approach. IEEE Communications Magazine, 54(3), 30–36. https://doi.org/10.1109/MCOM2016.7432144.

    Article  Google Scholar 

  10. Arutaki, A. (2016). Direction and trend of networking technology in Japan to save finite natural resources: After undergoing the East Japan megaquake. International Journal of Soft Computing and Networking, 1(1), 35–54. https://doi.org/10.1504/IJSCN.2016.077042.

    Article  Google Scholar 

  11. Ferrus, R., Sallent, O., Baldin, G., & Goratti, L. (2012). Public safety communications: Enhancement through cognitive radio and spectrum sharing principles. IEEE Vehicular Technology Magazine, 7(2), 54–61. https://doi.org/10.1109/MVT.2012.2190180.

    Article  Google Scholar 

  12. Bharatula, S., & Meenakshi, M. (2016). Design of cognitive radio network for hospital management system. Wireless Personal Communications, 90, 1021–1038. https://doi.org/10.1007/s11277-016-3280-2.

    Article  Google Scholar 

  13. Chen, C., & Yao, K. (2012). Cognitive radios methodology for dynamic spectrum allocation in broadband wireless cellular/public safety network systems. In GLOBECOM (Global Communications Conference) (pp. 157–162). https://doi.org/10.1109/glocomw.2012.6477562

  14. Bourdena, A., Pallis, E., Arvanitis A., Mastorakis, G., & Kormentzas, G. (2012). A spectrum aware routing protocol for public safety applications over cognitive radio networks. In ICT (International Conference on Telecommunications) (pp. 7–12). https://doi.org/10.1109/temu.2012.6294737

  15. Lu, B., Oyekan, J., Gu, D., Hu, H., & Nia, H. (2011). Mobile sensor networks for modeling environmental pollutant distribution. International Journal of Systems Science, 42(9), 1491–1505. https://doi.org/10.1080/00207721.2011.572198.

    Article  MathSciNet  MATH  Google Scholar 

  16. Micko, H., & Johannes, Leitner. (2006). Network enabled decision support for civil emergency management. Journal of Decision Systems, 15(2–3), 287–308. https://doi.org/10.3166/jds.15.287-308.

    Article  Google Scholar 

  17. Masonta, M. T., Kliks, A., & Mzyece, M. (2017). Unlocking the potential of unoccupied spectrum in developing countries: Southern African Development Community—case study. Development Southern Africa, 34(2), 224–244. https://doi.org/10.1080/0376835X.2016.1259985.

    Article  Google Scholar 

  18. Ghafoor, S., Sutton, P. D., Sreenan, C. J., & Brown, K. N. (2014). Cognitive radio for disaster response networks: Survey. Potential and Challenges. IEEE Wireless Communications, 21(5), 70–80. https://doi.org/10.1109/MWC.2014.6940435.

    Article  Google Scholar 

  19. Boche, H., & Schubert, M. (2009). Nash bargaining and proportional fairness for wireless systems. IEEE/ACM Transactions on Networking, 17(5), 1453–1466. https://doi.org/10.1109/TNET.2009.2026645.

    Article  Google Scholar 

  20. Brahma, S., & Chatterjee, M. (2015). Spectrum bargaining: A model for competitive sharing of unlicensed radio spectrum. IEEE Transactions on Cognitive Communications and Networking, 1(3), 257–272. https://doi.org/10.1109/TCCN.2015.2488638.

    Article  Google Scholar 

  21. Yang, C., Sheng, M., Li, J., Li, H., & Li, J. (2012). Energy-aware joint power and rate control in overlay cognitive radio networks: A nash bargaining perspective. Fourth International Conference on Intelligent Networking and Collaborative Systems. https://doi.org/10.1109/iNCoS.2012.20.

    Article  Google Scholar 

  22. Yang, C., Li, J., & Tian, Z. (2010). Optimal power control for cognitive radio networks under coupled interference constraints: A cooperative game-theoretic perspective. IEEE Transactions on Vehicular Technology, 59(4), 1696–1706. https://doi.org/10.1109/TVT.2009.2039502.

    Article  Google Scholar 

  23. Wang, Z., Wan, X., Wei, X., & Fan, Z. (2017). A closed-form power control algorithm in cognitive radio networks based on nash bargaining solution. In 3rd IEEE international conference on computer and communications (pp. 681–685). https://doi.org/10.1109/compcomm.2017.8322630

  24. Chen, B., Sun, J., Shao, S., Yang, L., & Zhu, H. (2010). An improved power control method based on cooperative game for cognitive radio networks. In IEEE 12th international conference on communication technology (pp. 709–712). https://doi.org/10.1109/icct.2010.5688588

  25. Wang, Z., Jiang, L., & He, C. (2012). A distributed power control algorithm in cognitive radio networks based on nash bargaining solution. IEEE ICC-Cognitive Radio and Networks Symposium. https://doi.org/10.1109/ICC.2012.6364338.

    Article  Google Scholar 

  26. Mhiri, M., Cheikhrouhou, K., & Samet, A. (2012). Power control in a cognitive radio system using bargaining theory. International Symposium on Communications and Information Technologies (ISCIT). https://doi.org/10.1109/ISCIT.2012.6380927.

    Article  MATH  Google Scholar 

  27. Chakraborty, M., Chatterjee, SR., & Ray, S. (2016). Performance evaluation of nash bargaining power sharing algorithm for integrated cellular phone system. In IEEE Uttar Pradesh section international conference on electrical, computer and electronics engineering (UPCON) (pp. 125–131). https://doi.org/10.1109/upcon.2016.7894638

  28. Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wang, X., & Quek, T. Q. S. (2015). Resource allocation for cognitive small cell networks: A cooperative bargaining game theoretic approach. IEEE Transactions on Wireless Communications, 14(6), 3481–3493. https://doi.org/10.1109/TWC.2015.2407355.

    Article  Google Scholar 

  29. Attar, A., Nakhai, M. R., & Aghvami, A. H. (2009). Cognitive radio game for secondary spectrum access problem. IEEE Transactions on Wireless Communications, 8(4), 2121–2131. https://doi.org/10.1109/TWC.2009.080884.

    Article  Google Scholar 

  30. Baharlouei, A., & Jabbari, B. (2013). Dynamic sub channel and power allocation using nash bargaining game for cognitive radio networks with imperfect PU activity sensing. In 8th International conference on cognitive radio oriented wireless networks (pp. 49–54). https://doi.org/10.1109/crowncom.2013.6636793

  31. Liu, Y., & Dong, L. (2014). Spectrum sharing in MIMO cognitive radio networks based on cooperative game theory. IEEE Transactions on Wireless Communications, 13(9), 4807–4820. https://doi.org/10.1109/TWC.2014.2331287.

    Article  Google Scholar 

  32. Ni, Q., & Zarakovitis, C. C. (2012). Nash bargaining game theoretic scheduling for joint channel and power allocation in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 30(1), 70–81. https://doi.org/10.1109/JSAC.2012.120107.

    Article  Google Scholar 

  33. Tian, F., & Yang, Z. (2007). A spectrum sharing algorithm based asymmetric-nash-bargain-solution in cognitive radios. International Conference on Wireless Communications, Networking and Mobile Computing. https://doi.org/10.1109/WICOM.2007.317.

    Article  Google Scholar 

  34. Chen, J., & Swindlehurst, A. L. (2012). Applying bargaining solutions to resource allocation in multiuser MIMO-OFDMA broadcast systems. IEEE Journal of Selected Topics In Signal Processing, 6(2), 127–139. https://doi.org/10.1109/JSTSP.2012.2188275.

    Article  Google Scholar 

  35. Zhang, G., Yang, K., Liu, P., & Ding, E. (2011). Achieving user cooperation diversity in TDMA-based wireless networks using cooperative game theory. IEEE Communications Letters, 15(2), 154–156. https://doi.org/10.1109/LCOMM.2011.122010.100629.

    Article  Google Scholar 

  36. MacKenzie, A. B., & Wicker, S. B. (2001). Game theory in communications: Motivation, explanation, and application to power control. Global Telecommunications Conference. https://doi.org/10.1109/GLOCOM.2001.965533.

    Article  Google Scholar 

  37. Leshem, A., & Zehavi, E. (2011). Smart carrier sensing for distributed computation of the generalized nash bargaining solution. In 17th International conference on digital signal processing (DSP) (pp. 1–5). https://doi.org/10.1109/icdsp.2011.6004987.

  38. Li, F., Tan, X., & Wang, L. (2015). Power scheme and time-division bargaining for cooperative transmission in cognitive radio. Wireless Communications and Mobile Computing, 15(2), 379–388. https://doi.org/10.1002/wcm.2351.

    Article  Google Scholar 

  39. Han, Z., Ji, Z., & Liu, K. J. R. (2005). Fair multiuser channel allocation for OFDMA networks using nash bargaining solutions and coalitions. IEEE Transactions on Communications, 53(8), 1366–1376. https://doi.org/10.1109/TCOMM.2005.852826.

    Article  Google Scholar 

  40. Ji, Z., & Liu, K. J. R. (2007). Dynamic spectrum sharing: A game theoretical overview. IEEE Communications Magazine, 45(5), 88–94. https://doi.org/10.1109/MCOM.2007.358854.

    Article  Google Scholar 

  41. Yaiche, H., Mazumdar, R. R., & Rosenberg, C. (2000). A game theoretic framework for bandwidth allocation and pricing in broadband networks. IEEE/ACM Transactions on Networking, 8(5), 667–678. https://doi.org/10.1109/90.879352.

    Article  Google Scholar 

  42. Vazirani, V.V. (2010). 2-Player nash and nonsymmetric bargaining games: Algorithms and structural properties. Kontogiannis S., Koutsoupias E., Spirakis P.G. (eds), Algorithmic game theory. SAGT 2010. Lecture notes in computer science. Springer, vol 6386, pp 323–334. :https://doi.org/10.1007/978-3-642-16170-4_28

  43. Lee, S., & Zhang, R. (2015). Cognitive wireless powered network: Spectrum sharing models and throughput maximization. IEEE Transactions on Cognitive Communications and Networking, 1(3), 335–346.

    Article  Google Scholar 

  44. Ma, K., Yang, J., Hu, G., & Guan, X. (2014). Cooperative relay-aware spectrum leasing based on nash bargaining solution in cognitive radio networks. International Journal of Communication Systems, 28(7), 1250–1264. https://doi.org/10.1002/dac.2757.

    Article  Google Scholar 

  45. Ho, C. K., & Zhang, R. (2012). Optimal energy allocation for wireless communications with energy harvesting constraints. Signal Processing, IEEE Transactions, 60(9), 4808–4818. https://doi.org/10.1109/TSP.2012.2199984.

    Article  MathSciNet  MATH  Google Scholar 

  46. Atapattu, S., & Evans, J. (2016). Optimal energy harvesting protocols for wireless relay networks. IEEE Transactions on Wireless Communications, 15(8), 5789–5803. https://doi.org/10.1109/TWC.2016.2569097.

    Article  Google Scholar 

  47. Zhang, Z., Shi, J., Chen, H., Guizani, M., & Qiu, P. (2008). A cooperation strategy based on nash bargaining solution in cooperative relay networks. IEEE Transactions on Vehicular Technology, 57(4), 2570–2577. https://doi.org/10.1109/TVT.2007.912960.

    Article  Google Scholar 

  48. Wang, L., Xu, X., Xu, W., He, Z., & Lin, J. (2010). A nash bargaining solution based cooperation pattern for open spectrum cognitive radio networks. IEEE International Conference on Wireless Information Technology and Systems. https://doi.org/10.1109/ICWITS.2010.5612275.

    Article  Google Scholar 

  49. Yinglei, T., Tao, H., Yuanyuan, L., Yi, M., & Mei, S. (2013). Cooperative game approach for scheduling in two-virtual-antenna cellular networks with relay stations fairness consideration. IEEE China Communications, 10, 56–70. https://doi.org/10.1109/cc.2013.6472859.

    Article  Google Scholar 

  50. Lu, J., Wang, R., Liu, Y., & Qian, D., (2010).Throughput maximization with bargaining game in cognitive radio networks. In 2010 IFIP wireless days, venice, (pp. 1–5). https://doi.org/10.1109/wd.2010.5657738

  51. Weidang, L., Yi, G., Jing, W., Jingyu, H., & Limin, M. (2013). Optimal time and bandwidth allocation based on nash bargaining solution for cooperative cognitive systems. IEEE China Communications, 10(12), 149–157. https://doi.org/10.1109/CC.2013.6723887.

    Article  Google Scholar 

  52. Zhang, B., Chen, K., Yu, J., & Cheng, S. (2012). Two-level Bargain game for spectrum leasing in cognitive radio networks. In IEEE 23rd international symposium on personal, indoor and mobile radio communications (pp. 962–967). https://doi.org/10.1109/pimrc.2012.6362924

  53. Ma, L., & Zhu, Q., (2010). A new algorithm of spectrum allocation for cognitive radio based on cooperative game. In 6th international conference on wireless communications networking and mobile computing (WiCOM) (pp. 1–4). https://doi.org/10.1109/wicom.2010.5600811

  54. Wu, Y., & Song, W. (2014). Cooperative resource sharing and pricing for proactive dynamic spectrum access via nash bargaining solution. IEEE Transactions on Parallel and Distributed Systems, 25(11), 2804–2817. https://doi.org/10.1109/TPDS.2013.285.

    Article  Google Scholar 

  55. Tran, N. H., Le, L. B., Ren, S., Han, Z., & Hong, C. S. (2015). Joint pricing and load balancing for cognitive spectrum access: Non-cooperation versus cooperation. IEEE Journal on Selected Areas in Communications, 33(5), 972–985. https://doi.org/10.1109/JSAC.2014.2361091.

    Article  Google Scholar 

  56. Pandian, M. B., Sichitiu, M. L., & Dai, H. (2015). Optimal resource allocation in random access cooperative cognitive radio networks. IEEE Transactions on Mobile Computing, 14(6), 1245–1258. https://doi.org/10.1109/TMC.2014.2343968.

    Article  Google Scholar 

  57. Nash, J. F. (1950). The Bargaining problem. Econometrica, 18(2), 155–162.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swagata Roy Chatterjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S.R., Ghosh, S. & Chakraborty, M. Nash Bargaining in Resource Allocation for Cognitive Radio: A Review. Wireless Pers Commun 118, 125–139 (2021). https://doi.org/10.1007/s11277-020-08005-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-08005-7

Keywords

Navigation