Skip to main content
Log in

Ant Colony Based Node Disjoint Local Repair in Multipath Routing in MANET Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Routes discovery that can provide reliable data transmission in Mobile Ad-hoc Networks is challenging due to its wireless channel characteristics and dynamic transmission environment. Link failure frequently occurs in ad-hoc networks due to nodes' mobile nature, which is not static to their position. The dynamic characteristic of the mobile ad hoc network facilitates multi-path routing protocols as a novel research area. This paper comprises an approach based on ACO acknowledge as NDLR-MP, an ACO-based node-disjoint multi-path routing protocol using AODV protocol. The proposed protocol intends to find all node-disjoint paths from source to destination in a single route discovery process that will conclusively minimize the routing control overhead. In this approach (NDLR-MP), the data packet transportation is initialized just after the first path is determined, wherein all the other secondary routes are also concurrently discovered. Additionally, we have also suggested an efficient local route repair method that redirects the current traffic to an available route if a broken link to the next hop is positioned towards the destination. The proposed route detection and maintenance methods can be considered as performance evaluation metrics. Moreover, results obtained on the Network Simulator (EXata 2.0) have shown the performance and effectiveness of the proposed approach of NDLR-MP in contrast to the AODV protocol, which has significantly amplified the performance of the provided protocol. The parameters like route availability, control overhead, average E-2-E, and PDR are comparing with the existing protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. da Silva Rodrigues, C. K., & Moreira Rocha, V. E. (2019). BT-MANET: A novel BitTorrent-like algorithm for video-on-demand streaming over MANETs. IEEE Latin America Transactions, 17(01), 78–84. https://doi.org/10.1109/TLA.2019.8826698.

    Article  Google Scholar 

  2. Chen, X., Wu, T., Sun, G., & Yu, H. (2019). Software-defined MANET swarm for mobile monitoring in hydropower plants. IEEE Access, 7, 152243–152257. https://doi.org/10.1109/ACCESS.2019.2948215.

    Article  Google Scholar 

  3. Kuo, W., & Chu, S. (2016). Energy efficiency optimization for mobile ad hoc networks. IEEE Access, 4, 928–940. https://doi.org/10.1109/ACCESS.2016.2538269.

    Article  Google Scholar 

  4. Rehman, R. A., & Kim, B. (2017). LOMCF: Forwarding and caching in named data networking based MANETs. IEEE Transactions on Vehicular Technology, 66(10), 9350–9364. https://doi.org/10.1109/TVT.2017.2700335.

    Article  Google Scholar 

  5. Liu, J., Sheng, M., Xu, Y., Li, J., & Jiang, X. (2016). End-to-End delay modeling in buffer-limited MANETs: A general theoretical framework. IEEE Transactions on Wireless Communications, 15(1), 498–511. https://doi.org/10.1109/TWC.2015.2475258.

    Article  Google Scholar 

  6. Tsuda, T., Komai, Y., Hara, T., & Nishio, S. (2016). Top-k query processing and malicious node identification based on node grouping in MANETs. IEEE Access, 4, 993–1007. https://doi.org/10.1109/ACCESS.2016.2541864.

    Article  Google Scholar 

  7. Luo, Z., Gan, X., Wang, X., & Luo, H. (2016). Optimal throughput-delay tradeoff in MANETs with supportive infrastructure using random linear coding. IEEE Transactions on Vehicular Technology, 65(9), 7543–7558. https://doi.org/10.1109/TVT.2015.2481427.

    Article  Google Scholar 

  8. Glass, S., Mahgoub, I., & Rathod, M. (2017). Leveraging MANET-based cooperative cache discovery techniques in VANETs: A survey and analysis. IEEE Communications Surveys and Tutorials, 19(4), 2640–2661. https://doi.org/10.1109/COMST.2017.2707926.

    Article  Google Scholar 

  9. Aftab, F., Zhang, Z., & Ahmad, A. (2017). Self-organization based clustering in MANETs using zone-based group mobility. IEEE Access, 5, 27464–27476. https://doi.org/10.1109/ACCESS.2017.2778019.

    Article  Google Scholar 

  10. Akande, D. O., & Mohd Salleh, M. F. (2019). A network lifetime extension-aware cooperative MAC protocol for MANETs with optimized power control. IEEE Access, 7, 18546–18557. https://doi.org/10.1109/ACCESS.2019.2895342.

    Article  Google Scholar 

  11. Song, Y., Luo, H., Pi, S., Gui, C., & Sun, B. (2020). Graph kernel-based clustering algorithm in MANETs. IEEE Access, 8, 107650–107660. https://doi.org/10.1109/ACCESS.2020.3001137.

    Article  Google Scholar 

  12. Fang, Y., Zhou, Y., Jiang, X., & Zhang, Y. (2017). Practical performance of MANETs under limited buffer and packet lifetime. IEEE Systems Journal, 11(2), 995–1005. https://doi.org/10.1109/JSYST.2015.2473155.

    Article  Google Scholar 

  13. El-Semary, A. M., & Diab, H. (2019). BP-AODV: Blackhole protected AODV routing protocol for MANETs based on chaotic map. IEEE Access, 7, 95197–95211. https://doi.org/10.1109/ACCESS.2019.2928804.

    Article  Google Scholar 

  14. Kulathumani, V., Arora, A., Sridharan, M., Parker, K., & Lemon, B. (2016). On the repair time scaling wall for MANETs. IEEE Communications Letters, 20(8), 1623–1626. https://doi.org/10.1109/LCOMM.2016.2572083.

    Article  Google Scholar 

  15. Jiang, Y., Daneshrad, B., & Pottie, G. J. (2017). A practical approach to joint timing, frequency synchronization and channel estimation for concurrent transmissions in a MANET. IEEE Transactions on Wireless Communications, 16(6), 3461–3475. https://doi.org/10.1109/TWC.2017.2682840.

    Article  Google Scholar 

  16. Baluja, W., Ledesma, T. O., & Coya, L. (2016). New solution for the creation of MANETs based on personal devices. IEEE Latin America Transactions, 14(3), 1480–1487. https://doi.org/10.1109/TLA.2016.7459638.

    Article  Google Scholar 

  17. Chen, Y., Hu, C., Wu, E. H., Chuang, S., & Chen, G. (2018). A delay-sensitive Multicast protocol for network capacity enhancement in Multirate MANETs. IEEE Systems Journal, 12(1), 926–937. https://doi.org/10.1109/JSYST.2017.2677952.

    Article  Google Scholar 

  18. Khan, M. S., Midi, D., Khan, M. I., & Bertino, E. (2017). Fine-grained analysis of packet loss in MANETs. IEEE Access, 5, 7798–7807. https://doi.org/10.1109/ACCESS.2017.2694467.

    Article  Google Scholar 

  19. Chen, Y., Wu, E. H., & Chen, G. (2017). Bandwidth-satisfied multicast by multiple trees and network coding in Lossy MANETs. IEEE Systems Journal, 11(2), 1116–1127. https://doi.org/10.1109/JSYST.2015.2406756.

    Article  Google Scholar 

  20. Bai, J., Sun, Y., Phillips, C., & Cao, Y. (2018). Toward constructive relay-based cooperative routing in MANETs. IEEE Systems Journal, 12(2), 1743–1754. https://doi.org/10.1109/JSYST.2017.2721543.

    Article  Google Scholar 

  21. Chen, Z., Zhou, W., Wu, S., & Cheng, L. (2020). An adaptive on-demand multipath routing protocol with QoS support for high-speed MANET. IEEE Access, 8, 44760–44773. https://doi.org/10.1109/ACCESS.2020.2978582.

    Article  Google Scholar 

  22. Li, Z., & Wu, Y. (2017). Smooth mobility and link reliability-based optimized link state routing scheme for MANETs. IEEE Communications Letters, 21(7), 1529–1532. https://doi.org/10.1109/LCOMM.2017.2654439.

    Article  Google Scholar 

  23. Chen, Y., Wu, E. H., Lin, C., & Chen, G. (2018). Bandwidth-satisfied and coding-aware multicast protocol in MANETs. IEEE Transactions on Mobile Computing, 17(8), 1778–1790. https://doi.org/10.1109/TMC.2017.2778262.

    Article  Google Scholar 

  24. Akhtar, N., Khan, M. A., Ullah, A., & Javed, M. Y. (2019). Congestion avoidance for smart devices by caching information in MANETS and IoT. IEEE Access, 7, 71459–71471. https://doi.org/10.1109/ACCESS.2019.2918990.

    Article  Google Scholar 

  25. Wang, X., & Zhu, X. (2018). Anycast-based content-centric MANET. IEEE Systems Journal, 12(2), 1679–1687. https://doi.org/10.1109/JSYST.2016.2619374.

    Article  Google Scholar 

  26. Jia, R., et al. (2017). Optimal capacity–delay tradeoff in MANETs with correlation of node mobility. IEEE Transactions on Vehicular Technology, 66(2), 1772–1785. https://doi.org/10.1109/TVT.2016.2564423.

    Article  Google Scholar 

  27. Hu, D., Fan, P., Beaulieu, N. C., & Fan, P. (2016). Outage probability analysis of linear MANETs in dual-hop AF systems with noisy relay and interference-limited destination. IEEE Transactions on Vehicular Technology, 65(3), 1795–1800. https://doi.org/10.1109/TVT.2015.2407156.

    Article  Google Scholar 

  28. Hao, S., Zhang, H., & Song, M. (2018). A stable and energy-efficient routing algorithm based on learning automata theory for MANET. Journal of Communications and Information Networks, 3(2), 43–57. https://doi.org/10.1007/s41650-018-0012-7.

    Article  Google Scholar 

  29. Niu, Z., Li, Q., Ma, C., Li, H., Shan, H., & Yang, F. (2020). Identification of critical nodes for enhanced network defense in MANET-IoT networks. IEEE Access, 8, 183571–183582. https://doi.org/10.1109/ACCESS.2020.3029736.

    Article  Google Scholar 

  30. Ojetunde, B., Shibata, N., & Gao, J. (2019). Secure payment system utilizing MANET for disaster areas. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(12), 2651–2663. https://doi.org/10.1109/TSMC.2017.2752203.

    Article  Google Scholar 

  31. Jiang, N., Xu, P., Yao, Y., Bui, T., & Chen, Q. (2018). Exploiting radio irregularity for location verification in sparse MANETs. IEEE Communications Letters, 22(6), 1284–1287. https://doi.org/10.1109/LCOMM.2018.2828406.

    Article  Google Scholar 

  32. Zhang, T., Zhao, S., & Cheng, B. (2020). Multipath routing and MPTCP-based data delivery over manets. IEEE Access, 8, 32652–32673. https://doi.org/10.1109/ACCESS.2020.2974191.

    Article  Google Scholar 

  33. Ahmad, M., Hameed, A., Ikram, A. A., & Wahid, I. (2019). State-of-the-art clustering schemes in mobile ad hoc networks: Objectives, challenges, and future directions. IEEE Access, 7, 17067–17081. https://doi.org/10.1109/ACCESS.2018.2885120.

    Article  Google Scholar 

  34. Ochola, E. O., Mejaele, L. F., Eloff, M. M., & van der Poll, J. A. (2017). Manet reactive routing protocols node mobility variation effect in analysing the impact of black hole attack. SAIEE Africa Research Journal, 108(2), 80–92. https://doi.org/10.23919/SAIEE.2017.8531629.

    Article  Google Scholar 

  35. Ganesh Kumar, K., & Sengan, S. (2020). Improved network traffic by attacking denial of service to protect resource using Z-test based 4-tier geomark traceback (Z4TGT). Wireless Personal Communications, 114, 3541–3575. https://doi.org/10.1007/s11277-020-07546-1.

    Article  Google Scholar 

  36. Rahman, T., Ullah, I., Rehman, A. U., & Naqvi, R. A. (2020). Notice of violation of IEEE publication principles: Clustering schemes in MANETs: Performance evaluation, open challenges, and proposed solutions. IEEE Access, 8, 25135–25158. https://doi.org/10.1109/ACCESS.2020.2970481.

    Article  Google Scholar 

  37. Ponguwala, M., & Rao, S. (2019). E2-SR: A novel energy-efficient secure routing scheme to protect MANET-IoT. IET Communications, 13(19), 3207–3216. https://doi.org/10.1049/iet-com.2019.0039.

    Article  Google Scholar 

  38. Jabbar, W. A., Saad, W. K., & Ismail, M. (2018). MEQSA-OLSRv2: A multicriteria-based hybrid multipath protocol for energy-efficient and QoS-aware data routing in MANET-WSN convergence scenarios of IoT. IEEE Access, 6, 76546–76572. https://doi.org/10.1109/ACCESS.2018.2882853.

    Article  Google Scholar 

  39. Liu, J., Xu, Y., Shen, Y., Jiang, X., & Taleb, T. (2017). On performance modeling for MANETs under general limited buffer constraint. IEEE Transactions on Vehicular Technology, 66(10), 9483–9497. https://doi.org/10.1109/TVT.2017.2710099.

    Article  Google Scholar 

  40. Li, T., Ma, J., Pei, Q., Song, H., Shen, Y., & Sun, C. (2019). DAPV: Diagnosing anomalies in MANETs routing with provenance and verification. IEEE Access, 7, 35302–35316. https://doi.org/10.1109/ACCESS.2019.2903150.

    Article  Google Scholar 

Download references

Funding

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Tharani, L. Ant Colony Based Node Disjoint Local Repair in Multipath Routing in MANET Network. Wireless Pers Commun 127, 159–186 (2022). https://doi.org/10.1007/s11277-021-08098-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08098-8

Keywords

Navigation