Skip to main content
Log in

Fragile Watermarking Based on QR Decomposition and Fourier Transform

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this study, a fragile watermarking technique is introduced for verifying images based on QR decomposition and Fourier Transform (FT). At first, we apply the FT to the host image to achieve the frequency domain, yielding a high-quality image. Then the resulting image is decomposed using QR factorization. In the meantime, the watermark image is decomposed only via QR factorization. Then, we add a coefficient of matrix R from the watermark image to the matrix R from the host image. This process embeds a proportion of the watermark image inside the host image. According to the experiments, our scheme is susceptible to the weakest attacks, so it is a fragile watermarking technique. So it helps to understand whether an image is manipulated or not. The validation dataset is composed of some images from the USC-SIPI image database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nejati, F., Sajedi, H., & Mohammadi, M. (2019). Fragile watermarking for image authentication using QR factorization and Fourier transform. In 2019 5th international conference on web research (ICWR) (pp. 45–49). IEEE, https://doi.org/10.1109/ICWR.2019.8765292

  2. Walton, S. (1995). Image authentication for a slippery new age. Dr. Dobb’s Journal, 20(4), 18–26.

    Google Scholar 

  3. Prasad, S., & Pal, A. K. (2020). A tamper detection suitable fragile watermarking scheme based on novel payload embedding strategy. Multimedia Tools and Applications, 79(3), 1673–1705. https://doi.org/10.1007/s11042-019-08144-5

    Article  Google Scholar 

  4. Molina-Garcia, J., Garcia-Salgado, B. P., Ponomaryov, V., Reyes-Reyes, R., Sadovnychiy, S., & Cruz-Ramos, C. (2020). An effective fragile watermarking scheme for color image tampering detection and self-recovery. Signal Processing: Image Communication, 81, 115725. https://doi.org/10.1016/j.image.2019.115725

    Article  Google Scholar 

  5. Hamadou, A., Camara, L., Issaka Hassane, A. A., & Naroua, H. (2020). Reversible fragile watermarking scheme for relational database based on prediction-error expansion. Mathematical Problems in Engineering. https://doi.org/10.1155/2020/1740205

    Article  Google Scholar 

  6. Wang, C., Zhang, H., & Zhou, X. (2018). LBP and DWT based fragile watermarking for image authentication. Journal of Information Processing Systems, 14(3), 666–679. https://doi.org/10.3745/JIPS.03.0096

    Article  Google Scholar 

  7. Zhang, H., Wang, C., & Zhou, X. (2017). Fragile watermarking for image authentication using the characteristic of SVD. Algorithms, 10(1), 27. https://doi.org/10.3390/a10010027

    Article  MathSciNet  MATH  Google Scholar 

  8. Qin, C., Ji, P., Zhang, X., Dong, J., & Wang, J. (2017). Fragile image watermarking with pixel-wise recovery based on overlapping embedding strategy. Signal Processing, 138, 280–293. https://doi.org/10.1016/j.sigpro.2017.03.033

    Article  Google Scholar 

  9. Ansari, I. A., Pant, M., & Ahn, C. W. (2016). SVD based fragile watermarking scheme for tamper localization and self-recovery. International Journal of Machine Learning and Cybernetics, 7(6), 1225–1239. https://doi.org/10.1007/s13042-015-0455-1

    Article  Google Scholar 

  10. Yu, M., Wang, J., Jiang, G., Peng, Z., Shao, F., & Luo, T. (2015). New fragile watermarking method for stereo image authentication with localization and recovery. AEU-International Journal of Electronics and Communications, 69(1), 361–370. https://doi.org/10.1016/j.aeue.2014.10.006

    Article  Google Scholar 

  11. Gul, E., & Ozturk, S. (2019). A novel hash function based fragile watermarking method for image integrity. Multimedia Tools and Applications, 78(13), 17701–17718. https://doi.org/10.1007/s11042-018-7084-0

    Article  Google Scholar 

  12. Goléa, N. E. H., & Melkemi, K. E. (2019). ROI-based fragile watermarking for medical image tamper detection. International Journal of High Performance Computing and Networking, 13(2), 199–210. https://doi.org/10.1504/IJHPCN.2019.097508

    Article  Google Scholar 

  13. Abdelhakim, A., Saleh, H. I., & Abdelhakim, M. (2019). Fragile watermarking for image tamper detection and localization with effective recovery capability using K-means clustering. Multimedia Tools and Applications, 78(22), 32523–32563. https://doi.org/10.1007/s11042-018-7084-0

    Article  Google Scholar 

  14. AlShehri, L., Hussain, M., Aboalsamh, H., & Wadood, A. (2020). Fragile watermarking for image authentication using BRINT and ELM. Multimedia Tools and Applications, 79(39), 29199–29223. https://doi.org/10.1007/s11042-020-09441-0

    Article  Google Scholar 

  15. Su, G. D., Chang, C. C., & Lin, C. C. (2020). Effective self-recovery and tampering localization fragile watermarking for medical images. IEEE Access, 8, 160840–160857. https://doi.org/10.1109/ACCESS.2020.3019832

    Article  Google Scholar 

  16. Al-Ardhi, S., Thayananthan, V., & Basuhail, A. (2019). Fragile Watermarking based on linear cellular automata using manhattan distances for 2D vector map. International Journal of Advanced Computer Science and Applications (IJACSA). https://doi.org/10.14569/IJACSA.2019.0100651

    Article  Google Scholar 

  17. Hemida, O., Huo, Y., He, H., & Chen, F. (2019). A restorable fragile watermarking scheme with superior localization for both natural and text images. Multimedia Tools and Applications, 78(9), 12373–12403. https://doi.org/10.1007/s11042-018-6664-3

    Article  Google Scholar 

  18. Chang, C. C., Lin, C. C., & Su, G. D. (2020). An effective image self-recovery based fragile watermarking using self-adaptive weight-based compressed AMBTC. Multimedia Tools and Applications, 79(33), 24795–24824. https://doi.org/10.1007/s11042-020-09132-w

    Article  Google Scholar 

  19. Botta, M., Cavagnino, D., & Pomponiu, V. (2020). Reversible fragile watermarking for multichannel images with high redundancy channels. Multimedia Tools and Applications, 79(35), 26427–26445. https://doi.org/10.1007/s11042-020-08986-4

    Article  Google Scholar 

  20. Prasad, S., & Pal, A. K. (2019). A secure fragile watermarking scheme for protecting integrity of digital images. Iranian Journal of Science and Technology, Transactions of Electrical Engineering. https://doi.org/10.1007/s40998-019-00275-7

    Article  Google Scholar 

  21. USC-SIPI. 1997. http://sipi.usc.edu/database.

  22. Singh, D., & Singh, S. K. (2016). Effective self-embedding watermarking scheme for image tampered detection and localization with recovery capability. Journal of Visual Communication and Image Representation, 38, 775–789. https://doi.org/10.1016/j.jvcir.2016.04.023

    Article  Google Scholar 

  23. Dadkhah, S., Abd Manaf, A., Hori, Y., Hassanien, A. E., & Sadeghi, S. (2014). An effective SVD-based image tampering detection and self-recovery using active watermarking. Signal Processing: Image Communication, 29(10), 1197–1210. https://doi.org/10.1016/j.image.2014.09.001

    Article  Google Scholar 

  24. Tong, X., Liu, Y., Zhang, M., & Chen, Y. (2013). A novel chaos-based fragile watermarking for image tampering detection and self-recovery. Signal Processing: Image Communication, 28(3), 301–308. https://doi.org/10.1016/j.image.2012.12.003

    Article  Google Scholar 

  25. Fan, M., & Wang, H. (2018). An enhanced fragile watermarking scheme to digital image protection and self-recovery. Signal Processing: Image Communication, 66, 19–29. https://doi.org/10.1016/j.image.2018.04.003

    Article  Google Scholar 

  26. Tai, W. L., & Liao, Z. J. (2018). Image self-recovery with watermark self-embedding. Signal Processing: Image Communication, 65, 11–25. https://doi.org/10.1016/j.image.2018.03.011

    Article  Google Scholar 

  27. Prasad, S., & Kumar Pal, A. (2020). A tamper detection suitable fragile watermarking scheme based on novel payload embedding strategy. Multimedia Tools and Applications, 79, 1673–1705. https://doi.org/10.1007/s11042-019-08144-5

    Article  Google Scholar 

  28. Prasad, S., & Pal, A. K. (2020). Hamming code and logistic-map based pixel-level active forgery detection scheme using fragile watermarking. Multimedia Tools and Applications, 79, 20897–20928. https://doi.org/10.1007/s11042-020-08715-x

    Article  Google Scholar 

  29. Prasad, S., & Pal, A. K. (2020). A secure fragile watermarking scheme for protecting integrity of digital images. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44, 703–727. https://doi.org/10.1007/s40998-019-00275-7

    Article  Google Scholar 

  30. Dua, M., Suthar, A., Garg, A., & Garg, V. (2021). An ILM-cosine transform-based improved approach to image encryption. Complex & Intelligent Systems, 7(1), 327–343.

    Article  Google Scholar 

  31. Nancharla, B. K., & Dua, M. (2020). An image encryption using intertwining logistic map and enhanced logistic map. In 2020 5th international conference on communication and electronics systems (ICCES) (pp. 1309–1314). IEEE.

  32. Dua, M., Wesanekar, A., Gupta, V., Bhola, M., & Dua, S. (2019). Differential evolution optimization of intertwining logistic map-DNA based image encryption technique. Journal of Ambient Intelligence and Humanized Computing, 11, 3771–3786.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedieh Sajedi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejati, F., Sajedi, H. & Zohourian, A. Fragile Watermarking Based on QR Decomposition and Fourier Transform. Wireless Pers Commun 122, 211–227 (2022). https://doi.org/10.1007/s11277-021-08895-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08895-1

Keywords

Navigation