Skip to main content

Advertisement

Log in

GAPSO-SVM: An IDSS-based Energy-Aware Clustering Routing Algorithm for IoT Perception Layer

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

With the emergence of Internet of Things (IoT) having large scale and generating huge amount of data, Intelligent Decision Support Systems (IDSSs) have attracted a lot of attention for provisioning the required Quality of Service. IoT perception layer is responsible for data dissemination of the “Things”, and energy efficient clustering protocols play an important role in providing them with long-time battery operation. Clustering routing protocols are among the most efficient methods in large scale IoT networks and using location-based decision support can highly simplify the routing problem. Existing literature either assume that the nodes’ location is known, or rely on the expensive and energy consuming GPS modules which are not practical in most IoT use cases. Developing a low-cost and low-energy localization solution is an ongoing challenge. In this paper, an IDSS based clustering routing protocol, named GAPSO-SVM, is proposed for the IoT perception layer utilizing a Support Vector Machine (SVM) based algorithm to estimate the nodes’ locations, and a hybrid Genetic Algorithm-Particle Swarm Optimization (GAPSO) based mechanism for clustering optimization. Simulation results show that, although the exact location of the nodes is not available, compared with recent similar works the convergence rate and network lifetime is enhanced by up to 80% and 11%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rahimi, M., Songhorabadi, M., & Haghi Kashani, M. (2020). Fog-based smart homes: A systematic review. Journal of Network and Computer Applications, 153, 102531. https://doi.org/10.1016/j.jnca.2020.102531

    Article  Google Scholar 

  2. Haghi Kashani, M., Rahmani, A. M., & Jafari Navimipour, N. (2020). Quality of service-aware approaches in fog computing. International Journal of Communication Systems, 33, e4340.

    Article  Google Scholar 

  3. Bazzaz Abkenar, S., Haghi Kashani, M., Mahdipour, E., & Jameii, S. M. (2020). Big data analytics meets social media: A systematic review of techniques, open issues, and future directions. Telematics and Informatics, 57, 101517–110555. https://doi.org/10.1016/j.tele.2020.101517

    Article  Google Scholar 

  4. Li, J., Liu, Y., Xie, J., Li, M., Sun, M., Liu, Z., et al. (2019). A remote monitoring and diagnosis method based on four-layer IoT frame perception. IEEE Access, 7, 144324–144338.

    Article  Google Scholar 

  5. Karimi, Y., Haghi Kashani, M., Akbari, M., & Mahdipour, E. (2021). Leveraging big data in smart cities: A systematic review. Concurrency and Computation: Practice and Experience, Early Access. https://doi.org/10.1002/cpe.6379.

    Article  Google Scholar 

  6. Haghi Kashani, M., Madanipour, M., Nikravan, M., Asghari, P., & Mahdipour, E. (2021). A systematic review of IoT in healthcare: Applications, techniques, and trends. Journal of Network and Computer Applications, Early Access. https://doi.org/10.1016/j.jnca.2021.103164.

    Article  Google Scholar 

  7. Fathi, M., Haghi Kashani, M., Jameii, S. M., & Mahdipour, E. (2021). Big data analytics in weather forecasting: A systematic review. Archives of Computational Methods in Engineering, Early Access. https://doi.org/10.1007/s11831-021-09616-4.

    Article  Google Scholar 

  8. Bellavista, P., Cardone, G., Corradi, A., & Foschini, L. (2013). Convergence of MANET and WSN in IoT urban scenarios. IEEE Sensors Journal, 13(10), 3558–3567.

    Article  Google Scholar 

  9. Souri, A., Hussien, A., Hoseyninezhad, M., & Norouzi, M. (2019). A systematic review of IoT communication strategies for an efficient smart environment. Transactions on Emerging Telecommunications Technologies, Early Access. https://doi.org/10.1002/ett.3736.

    Article  Google Scholar 

  10. Maadani, M., Motamedi, S. A., & Safdarkhani, H. (2011). Delay-reliability trade-off in MIMO-enabled IEEE 802.11-based wireless sensor and actuator networks. Procedia Computer Science, 5, 945–950.

    Article  Google Scholar 

  11. Zarei, M., Rahmani, A. M., & Farazkish, R. (2011). CCTF: Congestion control protocol based on trustworthiness of nodes in wireless sensor networks using fuzzy logic. International Journal of Ad Hoc and Ubiquitous Computing, 8(1–2), 54–63.

    Article  Google Scholar 

  12. Maadani, M., & Motamedi, S. A. (2011). EDCA delay analysis of spatial diversity in IEEE 802.11-based real-time wireless sensor and actuator networks. In 8th International Symposium on Wireless Communication Systems, 675–679. https://doi.org/10.1109/ISWCS.2011.6125438.

  13. Nikravan, M., Jameii, S. M., & Kashani, M. H. (2011). An intelligent energy efficient QoS-routing scheme for WSN. International Journal of Advanced Engineering Sciences and Technologies, 8(1), 121–124.

    Google Scholar 

  14. Maadani, M., Motamedi, S. A., & Safdarkhani, H. (2011). An adaptive rate and coding scheme for MIMO-enabled IEEE 802.11-based Soft-Real-Time wireless sensor and actuator networks. In 3rd International Conference on Computer Research and Development, 439–443. https://doi.org/10.1109/ICCRD.2011.5764053.

  15. Bahaghighat, M., & Motamedi, S. A. (2016). It-mac: Enhanced mac layer for image transmission over cognitive radio sensor networks. International Journal of Computer Science and Information Security, 14(12), 234.

    Google Scholar 

  16. Maadani, M., Motamedi, S. A., & Soltani, M. (2012). EDCA delay analysis of spatial multiplexing in IEEE802. 11-based wireless sensor and actuator networks. International Journal of Information and Electronics Engineering, 2(3), 318–322.

    Google Scholar 

  17. Kaur, T., & Kumar, D. (2020). A survey on QoS mechanisms in WSN for computational intelligence based routing protocols. Wireless Networks, 26(4), 2465–2486.

    Article  Google Scholar 

  18. Darabkh, K. A., & Al-Jdayeh, L. (2019). AEA-FCP: An adaptive energy-aware fixed clustering protocol for data dissemination in wireless sensor networks. Personal and Ubiquitous Computing, 23(5–6), 819–837.

    Article  Google Scholar 

  19. Zarei, M., & Rahmani, A. M. (2017). Analysis of vehicular mobility in a dynamic free-flow highway. Vehicular Communications, 7, 51–57.

    Article  Google Scholar 

  20. Mohammadi, J., & Akbari, R. (2010). Vehicle speed estimation based on the image motion blur using radon transform. In 2nd International Conference on Signal Processing Systems, V1-243-V1-247. https://doi.org/10.1109/ICSPS.2010.5555577.

  21. Zarei, M., & Rahmani, A. M. (2016). Renewal process of information propagation in delay tolerant VANETs. Wireless Personal Communications, 89(4), 1045–1063.

    Article  Google Scholar 

  22. Bahaghighat, M., & Motamedi, S. A. (2017). Psnr enhancement in image streaming over cognitive radio sensor networks. Etri Journal, 39(5), 683–694.

    Article  Google Scholar 

  23. Zarei, M., Rahmani, A. M., & Samimi, H. (2017). Connectivity analysis for dynamic movement of vehicular ad hoc networks. Wireless Networks, 23(3), 843–858.

    Article  Google Scholar 

  24. Esmaeili Kelishomi, A., Garmabaki, A., Bahaghighat, M., & Dong, J. (2019). Mobile user indoor-outdoor detection through physical daily activities. Sensors, 19(3), 1–29. https://doi.org/10.3390/s19030511.

    Article  Google Scholar 

  25. Zarei, M., Rahmani, A. M., Farazkish, R., & Zahirnia, S. (2010). FCCTF: Fairness congestion control for a distrustful wireless sensor network using fuzzy logic. In 10th International Conference on Hybrid Intelligent Systems, 1–6. https://doi.org/10.1109/HIS.2010.5601071.

  26. Bahaghighat, M., Motamedi, S. A., & Xin, Q. (2019). Image transmission over cognitive radio networks for smart grid applications. Applied Sciences, 9(24), 5498.

    Article  Google Scholar 

  27. Zarei, M. (2020). Traffic-centric mesoscopic analysis of connectivity in VANETs. The Computer Journal, 63(2), 203–219.

    Article  Google Scholar 

  28. Mohajerani, A., & Gharavian, D. (2016). An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks. Wireless Networks, 22(8), 2637–2647.

    Article  Google Scholar 

  29. Liu, X., & Liu, Q. (2018). A virtual uneven grid-based routing protocol for mobile sink-based WSNs in a smart home system. Personal and Ubiquitous Computing, 22(1), 111–120.

    Article  Google Scholar 

  30. Orojloo, H., & Haghighat, A. T. (2016). A Tabu search based routing algorithm for wireless sensor networks. Wireless Networks, 22(5), 1711–1724.

    Article  Google Scholar 

  31. Azharuddin, M., & Jana, P. K. (2017). PSO-based approach for energy-efficient and energy-balanced routing and clustering in wireless sensor networks. Soft Computing, 21(22), 6825–6839.

    Article  Google Scholar 

  32. Gupta, G. P., & Jha, S. (2018). Integrated clustering and routing protocol for wireless sensor networks using Cuckoo and Harmony Search based metaheuristic techniques. Engineering Applications of Artificial Intelligence, 68, 101–109.

    Article  Google Scholar 

  33. Souidi, M., Habbani, A., Berradi, H., & El Mahdi, F. (2019). Geographic forwarding rules to reduce broadcast redundancy in mobile ad hoc wireless networks. Personal and Ubiquitous Computing, 23(5–6), 765–775.

    Article  Google Scholar 

  34. Wang, S., Yu, J., Atiquzzaman, M., Chen, H., & Ni, L. (2018). CRPD: A novel clustering routing protocol for dynamic wireless sensor networks. Personal and Ubiquitous Computing, 22(3), 545–559.

    Article  Google Scholar 

  35. Khabiri, M., & Ghaffari, A. (2018). Energy-aware clustering-based routing in wireless sensor networks using cuckoo optimization algorithm. Wireless Personal Communications, 98(3), 2473–2495.

    Article  Google Scholar 

  36. Chen, Y.-N., Lyu, N.-Q., Song, G.-H., Yang, B.-W., & Jiang, X.-H. (2020). A traffic-aware Q-network enhanced routing protocol based on GPSR for unmanned aerial vehicle ad-hoc networks. Frontiers of Information Technology and Electronic Engineering, 21(9), 1308–1320.

    Article  Google Scholar 

  37. Safara, F., Souri, A., Baker, T., Al Ridhawi, I., & Aloqaily, M. (2020). PriNergy: A priority-based energy-efficient routing method for IoT systems. The Journal of Supercomputing, 76, 8609–8626. https://doi.org/10.1007/s11277-020-03147-8.

    Article  Google Scholar 

  38. Pandiyaraju, V., Logambigai, R., Ganapathy, S., & Kannan, A. (2020). An energy efficient routing algorithm for WSNs using intelligent fuzzy rules in precision agriculture. Wireless Personal Communications, 112, 243–259. https://doi.org/10.1007/s11277-020-07024-8

    Article  Google Scholar 

  39. Hashemi, S., & Zarei, M. (2021). Internet of things backdoors: Resource management issues, security challenges, and detection methods. Transactions on Emerging Telecommunications Technologies, 32(2), e4142.

    Article  Google Scholar 

  40. Vaiyapuri, T., Parvathy, V. S., Manikandan, V., Krishnaraj, N., Gupta, D., & Shankar, K. (2021). A novel hybrid optimization for cluster‐based routing protocol in information-centric wireless sensor networks for IoT based mobile edge computing. Wireless Personal Communications, Early Access. https://doi.org/10.1007/s11277-021-08088-w.

    Article  Google Scholar 

  41. Haseeb, K., Bakar, K. A., Ahmed, A., Darwish, T., & Ahmed, I. (2017). WECRR: Weighted energy-efficient clustering with robust routing for wireless sensor networks. Wireless Personal Communications, 97(1), 695–721.

    Article  Google Scholar 

  42. Wang, Z.-X., Zhang, M., Gao, X., Wang, W., & Li, X. (2019). A clustering WSN routing protocol based on node energy and multipath. Cluster Computing, 22(3), 5811–5823.

    Article  Google Scholar 

  43. Pal, R., Yadav, S., & Karnwal, R. (2020). EEWC: Energy-efficient weighted clustering method based on genetic algorithm for HWSNs. Complex & Intelligent Systems, 6(2), 391–400. https://doi.org/10.1007/s40747-020-00137-4.

    Article  Google Scholar 

  44. Tran, D. A., & Nguyen, T. (2008). Localization in wireless sensor networks based on support vector machines. IEEE Transactions on Parallel and Distributed Systems, 19(7), 981–994.

    Article  Google Scholar 

  45. Song, L., Zhao, L., & Ye, J. (2019). DV-hop node location algorithm based on GSO in wireless sensor networks. Journal of Sensors, 2019, 1–9. https://doi.org/10.1155/2019/2986954.

    Article  Google Scholar 

  46. Sharma, D., Gaur, P., & Mittal, A. (2014). Comparative analysis of hybrid GAPSO optimization technique with GA and PSO methods for cost optimization of an off-grid hybrid energy system. Energy Technology and Policy, 1(1), 106–114.

    Article  Google Scholar 

  47. Keshanchi, B., Souri, A., & Navimipour, N. J. (2017). An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: Formal verification, simulation, and statistical testing. Journal of Systems and Software, 124, 1–21.

    Article  Google Scholar 

  48. Caputo, D., Grimaccia, F., Mussetta, M., & Zich, R. E. (2010). Genetical swarm optimization of multihop routes in wireless sensor networks. Applied Computational Intelligence and Soft Computing, 2010, 1–4. https://doi.org/10.1155/2010/523943.

    Article  Google Scholar 

  49. Gandelli, A., Grimaccia, F., Mussetta, M., Pirinoli, P., & Zich, R. E. (2006). Genetical swarm optimization: An evolutionary algorithm for antenna design. Automatika: časopis za automatiku, mjerenje, elektroniku računarstvo i komunikacije, 47(3–4), 105–112.

    Google Scholar 

  50. Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.

    Article  Google Scholar 

  51. Wang, J., Cheng, Z., Ersoy, O. K., Zhang, P., & Dai, W. (2019). Multi-offspring genetic algorithm with two-point crossover and the relationship between number of offsprings and computational speed. Journal of Computers, 30(5), 111–127.

    Google Scholar 

  52. Gupta, S. K., & Jana, P. K. (2015). Energy efficient clustering and routing algorithms for wireless sensor networks: GA based approach. Wireless Personal Communications, 83(3), 2403–2423.

    Article  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

The paper is based on the Mozhdeh Norouzi Shad’s MSc. thesis. Mohsen Maadani (the corresponding author) and Meisam Nesari Moghadam are the thesis supervisor and advisor respectively. All authors contributed to the idea development, algorithm design, analytical method verification, implementation of the research and simulation, analysis of the results, and writing of the manuscript.

Corresponding author

Correspondence to Mohsen Maadani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norouzi Shad, M., Maadani, M. & Nesari Moghadam, M. GAPSO-SVM: An IDSS-based Energy-Aware Clustering Routing Algorithm for IoT Perception Layer. Wireless Pers Commun 126, 2249–2268 (2022). https://doi.org/10.1007/s11277-021-09051-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09051-5

Keywords

Navigation