Skip to main content
Log in

Genetic mapping of Cacopsylla pyri resistance in an interspecific pear (Pyrus spp.) population

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Cacopsylla pyri (pear psylla) is one of the most serious pests of pear (Pyrus spp.) in Europe. It can cause high yield losses, and its control has become difficult since it has developed resistance to a wide range of pesticides. Pear breeders are developing new cultivars resistant to pear psyllids, and Asian species, such as Pyrus ussuriensis and Pyrus × bretschneideri, are good sources of resistance. Antixenosis and antibiosis resistance to psylla were both identified in pear; they may differ in the biological mechanism and probably have different genetic backgrounds. We crossed interspecific P. × bretschneideri × Pyrus communis hybrid PEAR3, resistant to pear psylla, with the susceptible European pear cultivar ‘Moonglow’ to obtain an F1 population for the genetic mapping of the resistance. Quantitative trait locus (QTL) analysis was carried out for antibiosis by measuring the number of surviving nymphs and the nymphal development, using a novel phenotyping protocol and a saturated genetic map made of single-nucleotide polymorphism (SNP) and microsatellite (simple sequence repeats (SSR)) markers. A stable QTL was detected on linkage group (LG) 8 of PEAR3 (R 2 = 17.2–39.1 %). In addition, QTLs were detected on LG5 (R 2 = 10.8 %) of PEAR3 and on LG15 of ‘Moonglow’ (R 2 = 13.7 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The name ‘Xuehuali’ for this cultivar substitutes for the name ‘Shiyuehuali,’ which was used in Montanari et al. (2013). P. × bretschneideri ‘Xuehuali’ is also known as ‘Snowflake’ pear (Wang 2002).

References

  • Atger P, Bigre JP (1982) Le psylle du poirier. Centre Technique Interprofessionnel des Fruits et Légumes, Paris

  • Bell RL (1984) Evaluation of Pyrus germplasm for resistance to the pear psylla. Acta Horticult 161:234–237

  • Bell RL (1992) Additional East European Pyrus germplasm with resistance to pear psylla nymphal feeding. HortSci 27:412–413

    Google Scholar 

  • Bell RL (2013a) Host resistance to pear psylla of breeding program selections and cultivars. HortSci 48:143–145

    Google Scholar 

  • Bell RL (2013b) Inheritance of resistance to pear psylla nymphal feeding in pear (Pyrus communis L.) of European origin. HortSci 48:425–427

    Google Scholar 

  • Bell RL, Stuart LC (1990) Resistance in Eastern European Pyrus germplasm to pear psylla nymphal feeding. HortSci 25:789–791

    Google Scholar 

  • Berrada S, Nguyen TX, Lemoine J et al (1995) Thirteen pear species and cultivars evaluated for resistance to Cacopsylla pyri (Homoptera: Psyllidae). Environ Entomol 24:1604–1607

    Article  Google Scholar 

  • Bouvier L, Bourcy M, Boulay M et al (2011) European pear cultivar resistance to bio-pests: scab (Venturia pirina) and psylla (Cacopsylla pyri). Acta Horticult 909:459–470

    CAS  Google Scholar 

  • Buès R, Boudinhon L, Toubon JF (2003) Resistance of pear psylla (Cacopsylla pyri L.; Hom., Psyllidae) to deltamethrin and synergism with piperonyl butoxide. J Appl Entomol 127:305–312

    Article  Google Scholar 

  • Bus VGM, Chagné D, Bassett HCM et al (2008) Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genet Genomes 4:223–236. doi:10.1007/s11295-007-0103-3

    Article  Google Scholar 

  • Bus VGM, Bassett HCM, Bowatte D et al (2010) Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection. Tree Genet Genomes 6:477–487

    Article  Google Scholar 

  • Butt BA, Stuart LC, Bell RL (1988) Feeding behavior of pear psylla (Homoptra: Psyllidae) nymphs on susceptible and resistant Pyrus germplasm. J Econ Entomol 81:1394–1397

    Article  Google Scholar 

  • Calenge F, Drouet D, Denancé C et al (2005) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–35. doi:10.1007/s00122-005-2002-z

    Article  CAS  PubMed  Google Scholar 

  • Cevik V, King G (2002) High-resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp. Theor Appl Genet 105:346–354

    Article  CAS  PubMed  Google Scholar 

  • Chagné D, Crowhurst RN, Pindo M et al (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS One. doi:10.1371/journal.pone.0092644

    Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Civolani S (2012) The past and present of pear protection against the pear psylla, Cacopsylla pyri L. Insecticides - Pest Engineering. INTECH Open Access Publisher, pp 385–408

  • Civolani S, Peretto R, Caroli L et al (2007) Preliminary resistance screening on abamectin in pear psylla (Hemiptera: Psyllidae ) in Northern Italy. J Econ Entomol 100:1637–1641

    Article  CAS  PubMed  Google Scholar 

  • Civolani S, Grandi G, Chicca M et al (2013) Probing behaviour of Cacopsylla pyri on a resistant pear selection. J Appl Entomol 137:365–375. doi:10.1111/jen.12003

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196. doi:10.1007/s10681-005-1681-5

    Article  CAS  Google Scholar 

  • Durel C-E, Denancé C, Brisset MN (2009) Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes ‘Evereste’ and Malus floribunda clone 821. Genome 52:139–147. doi:10.1139/G08-111

    Article  CAS  PubMed  Google Scholar 

  • Evans KM, Govan CL, Fernández-Fernández F (2008) A new gene for resistance to Dysaphis pyri in pear and identification of flanking microsatellite markers. Genome 51:1026–31. doi:10.1139/G08-093

    Article  CAS  PubMed  Google Scholar 

  • Feenstra B, Skovgaard IM, Broman KW (2006) Mapping quantitative trait loci by an extension of the Haley-Knott regression method using estimating equations. Genetics 173:2269–82. doi:10.1534/genetics.106.058537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 69:315–24

    Article  CAS  Google Scholar 

  • Harries FH, Burts EC (1965) Insecticide resistance in the pear psylla. J Econ Entomol 58:172–173

    Article  Google Scholar 

  • Harris MK, Lamb RC (1973) Resistance to the pear psylla in pears with Pyrus ussuriensis lineage. J Am Soc Hortic Sci 98:378–381

    Google Scholar 

  • Hesler LS, Tharp CI (2005) Antibiosis and antixenosis to Rhopalosiphum padi among triticale accessions. Euphytica 143:153–160. doi:10.1007/s10681-005-3060-7

    Article  Google Scholar 

  • Hodkinson ID (2009) Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): a global synthesis. J Nat Hist 43:65–179. doi:10.1080/00222930802354167

    Article  Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kapatos ET, Stratopoulou ET (1999) Duration times of the immature stages of Cacopsylla pyri L. (Hom., Psyllidae), estimated under field conditions, and their relationship to ambient temperature. J Appl Entomol 123:555–559. doi:10.1046/j.1439-0418.1999.00417.x

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lespinasse Y, Chevalier M, Durel C-E et al (2008) Pear breeding for scab and psylla resistance. Acta Horticult 800:475–482

    Google Scholar 

  • Montanari S, Saeed M, Knäbel M et al (2013) Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids. PLoS One. doi:10.1371/journal.pone.0077022

    Google Scholar 

  • Pasqualini E, Civolani S, Musacchi S et al (2006) Cacopsylla pyri behaviour on new pear selections for host resistance programs. Bull Insectology 59:27–37

    Google Scholar 

  • Puterka GJ (1997) Intraspecific variation in pear psylla (Psyllidae: Homoptera) nymphal survival and development on resistant and susceptible pear. Environ Entomol 26:552–557

    Article  Google Scholar 

  • Robert P, Raimbault T (2004) Resistance of some Pyrus communis cultivars and Pyrus hybrids to the pear psylla Cacopsylla pyri (Homoptera, Psyllidae). Acta Horticult 671:571–575

    Google Scholar 

  • Robert P, Guérif P, Lemoine J, Le Lézec M (2004) Criblage de génotypes de Pyrus vis-à-vis de la résistance au psylle du poirier Cacopsylla pyri (L.). Chaiers Agric 13:349–354

    Google Scholar 

  • Roche P, Alston FH, Maliepaard C et al (1997) RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (Sd 1) in apple. Theor Appl Genet 94:528–533

    Article  CAS  Google Scholar 

  • Salvianti F, Bettini PP, Giordani E et al (2008) Identification by suppression subtractive hybridization of genes expressed in pear (Pyrus spp.) upon infestation with Cacopsylla pyri (Homoptera: Psyllidae). J Plant Physiol 165:1808–16. doi:10.1016/j.jplph.2007.12.010

    Article  CAS  PubMed  Google Scholar 

  • Schaub L, Graf B, Butturini A (2005) Phenological model of pear psylla Cacopsylla pyri. Entomol Exp Appl 117:105–111. doi:10.1111/j.1570-7458.2005.00339.x

    Article  Google Scholar 

  • Shaltiel-Harpaz L, Soroker V, Kedoshim R et al (2014) Two pear accessions evaluated for susceptibility to pear psylla Cacopsylla bidens (Šulc) in Israel. Pest Manag Sci 70:234–9. doi:10.1002/ps.3543

    Article  CAS  PubMed  Google Scholar 

  • Stanica F (2002) Behaviour of four over grafted Chinese pear varieties (Pyrus serotina) in Bucuresti area. Acta Horticult 596:405–409

    Google Scholar 

  • Stoeckli S, Mody K, Dorn S (2008a) Aphis pomi (Hemiptera: Aphididae) population development, shoot characteristics, and antibiosis resistance in different apple genotypes. J Econ Entomol 101:1341–8

    Article  PubMed  Google Scholar 

  • Stoeckli S, Mody K, Gessler C et al (2008b) QTL analysis for aphid resistance and growth traits in apple. Tree Genet Genomes 4:833–847

    Article  Google Scholar 

  • Stoeckli S, Mody K, Gessler C et al (2009) Quantitative trait locus mapping of resistance in apple to Cydia pomonella and Lyonetia clerkella and of two selected fruit traits. Ann Appl Biol 154:377–387

    Article  Google Scholar 

  • Thode HC (2002) Testing for normality. CRC Press, New York

    Book  Google Scholar 

  • Van Ooijen JW (2004) MapQTL 5, Software for the mapping of quantitative trait loci in experimental population. Kyazma BV, Wageningen

    Google Scholar 

  • Wang Y (2002) Genetic resources of deciduous fruit and nut crops in China. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • Westigard PH, Westwood MN, Lombard PB (1970) Host preference and resistance of Pyrus species to the pear psylla, Psylla pyricola Foerster. J Am Soc Hortic Sci 95:34–6

    Google Scholar 

  • Wu J, Wang Z, Shi Z et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408. doi:10.1101/gr.144311.112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

SM was funded by the Fondazione Edmund Mach (FEM) PhD School. We greatly thank Déborah Renault, Jasmine McCarthy, Ferreol Braud, Sophie Aligon, Medhi Al-Rifai, Clement Joffrion, Sylvain Hanteville, Valérie Le Mignon, Arnaud Guyader, and Christine Boursier (UMR1345 IRHS, Angers, France) for their precious help in the scoring on C. pyri eggs and nymphs. We also thank Lester Brewer at PFR for generating the PEAR3 × ‘Moonglow’ cross and the INEM team of IRHS, especially Michel Boucourt, and the INRA Experimental Unit (UE Horti, Angers, France), especially Christian Cattanéo, for taking care of the seedling population.

Data archiving statement

QTL data are reported in Table 4 and will be made publicly available through the Genome Database for Rosaceae (www.rosaceae.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles-Eric Durel.

Additional information

Communicated by E. Dirlewanger

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM_1

Psylla resistance phenotypic data distributions in a segregating interspecific pear population in 2013 and 2014. (PDF 189 kb)

ESM_2

Distribution of the phenotypic means of psylla resistance adjusted for environmental factors in a pear segregating population in 2013 and 2014. (PDF 321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montanari, S., Guérif, P., Ravon, E. et al. Genetic mapping of Cacopsylla pyri resistance in an interspecific pear (Pyrus spp.) population. Tree Genetics & Genomes 11, 74 (2015). https://doi.org/10.1007/s11295-015-0901-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0901-y

Keywords

Navigation