Skip to main content

Advertisement

Log in

Characterization of Dahl salt-sensitive rats with genetic disruption of the A2B adenosine receptor gene: implications for A2B adenosine receptor signaling during hypertension

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The A2B adenosine receptor (AR) has emerged as a unique member of the AR family with contrasting roles during acute and chronic disease states. We utilized zinc-finger nuclease technology to create A2BAR gene (Adora2b)-disrupted rats on the Dahl salt-sensitive (SS) genetic background. This strategy yielded a rat strain (SS-Adora2b mutant rats) with a 162-base pair in-frame deletion of Adora2b that included the start codon. Disruption of A2BAR function in SS-Adora2b mutant rats was confirmed by loss of agonist (BAY 60-6583 or NECA)-induced cAMP accumulation and loss of interleukin-6 release from isolated fibroblasts. In addition, BAY 60-6583 produced a dose-dependent increase in glucose mobilization that was absent in SS-Adora2b mutants. Upon initial characterization, SS-Adora2b mutant rats were found to exhibit increased body weight, a transient delay in glucose clearance, and reduced proinflammatory cytokine production following challenge with lipopolysaccharide (LPS). In addition, blood pressure was elevated to a greater extent (∼15–20 mmHg) in SS-Adora2b mutants as they aged from 7 to 21 weeks. In contrast, hypertension augmented by Ang II infusion was attenuated in SS-Adora2b mutant rats. Despite differences in blood pressure, indices of renal and cardiac injury were similar in SS-Adora2b mutants during Ang II-augmented hypertension. We have successfully created and validated a new animal model that will be valuable for investigating the biology of the A2BAR. Our data indicate varying roles for A2BAR signaling in regulating blood pressure in SS rats, playing both anti- and prohypertensive roles depending on the pathogenic mechanisms that contribute to blood pressure elevation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Feoktistov I, Biaggioni I (1997) Adenosine A2B receptors. Pharmacol Rev 49(4):381–402

    CAS  PubMed  Google Scholar 

  2. Kong T, Westerman KA, Faigle M, Eltzschig HK, Colgan SP (2006) HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J 20:2242–2250. doi:10.1096/fj.06-6419com

    Article  CAS  PubMed  Google Scholar 

  3. Aherne CM, Kewley EM, Eltzschig HK (2011) The resurgence of A2B adenosine receptor signaling. Biochim Biophys Acta 1808:1329–1339. doi:10.1016/j.bbamem.2010.05.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Haskó G, Csóka B, Németh ZH, Vizi ES, Pacher P (2009) A2B adenosine receptors in immunity and inflammation. Trends Immunol 30:263–270. doi:10.1016/j.it.2009.04.001

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kreckler LM, Wan TC, Ge ZD, Auchampach JA (2006) Adenosine inhibits tumor necrosis factor-a release from mouse peritoneal macrophages via A2A and A2B but not the A3 adenosine receptor. J Pharmacol Exp Ther 317(1):172–180. doi:10.1124/jpet.105.096016

    Article  CAS  PubMed  Google Scholar 

  6. Liu R, Groenewoud NJ, Peeters MC, Lenselink EB, IJzerman AP (2014) A yeast screening method to decipher the interaction between the adenosine A2B receptor and the C-terminus of different G protein alpha-subunits. Purinergic Signal 10(3):441–453. doi:10.1007/s11302-014-9407-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Auchampach JA, Kreckler LM, Wan TC, Maas JE, van der Hoeven D, Gizewski E, Narayanan J, Maas GE (2009) Characterization of the A2B adenosine receptor from mouse, rabbit, and dog. J Pharmacol Exp Ther 329(1):2–13. doi:10.1124/jpet.108.148270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Yang D, Zhang Y, Nguyen HG, Koupenova M, Chauhan AK, Makitalo M, Jones MR, Hilaire CS, Seldin DC, Toselli P, Lamperti E, Schreiber BM, Gavras H, Wagner DD, Ravid K (2006) The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Investig 116:1913–1923. doi:10.1172/JCI27933DS1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. van der Hoeven D, Wan TC, Gizewski ET, Kreckler LM, Maas JE, Van Orman J, Ravid K, Auchampach JA (2011) A role for the low-affinity A2B adenosine receptor in regulating superoxide generation by murine neutrophils. J Pharmacol Exp Ther 338:1004–1012. doi:10.1124/jpet.111.181792

    Article  PubMed Central  PubMed  Google Scholar 

  10. Moriyama K, Sitkovsky MV (2010) Adenosine A2A receptor is involved in cell surface expression of A2B receptor. J Biol Chem 285(50):39271–39288. doi:10.1074/jbc.M109.098293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Antonioli L, Blandizzi C, Csóka B, Pacher P, Haskó G (2015) Adenosine signalling in diabetes mellitus—pathophysiology and therapeutic considerations. Nat Rev Endocrinol 11:228–241. doi:10.1038/nrendo.2015.10

    CAS  PubMed  Google Scholar 

  12. Johnston-Cox HA, Koupenova M, Ravid K (2012) A2 adenosine receptors and vascular pathologies. Arterioscler Thromb Vasc Biol 32:870–878. doi:10.1161/ATVBAHA.112.246181

    Article  CAS  PubMed  Google Scholar 

  13. Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature 509(7500):310–317. doi:10.1038/nature13085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Vohwinkel CU, Hoegl S, Eltzschig HK (2015) Hypoxia signaling during acute lung injury. J Appl Physiol (1985):jap 00226 02015. doi:10.1152/japplphysiol.00226.2015

  15. Aherne CM, Saeedi B, Collins CB, Masterson JC, McNamee EN, Perrenoud L, Rapp CR, Curtis VF, Bayless A, Fletcher A, Glover LE, Evans CM, Jedlicka P, Furuta GT, de Zoeten EF, Colgan SP, Eltzschig HK (2015) Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis. Mucosal Immunol. doi:10.1038/mi.2015.22

    PubMed Central  Google Scholar 

  16. Cronstein BN (2011) Adenosine receptors and fibrosis: a translational review. F1000 Biol Rep 3:1–6. doi:10.3410/B3-21

    Article  Google Scholar 

  17. Karmouty-Quintana H, Xia Y, Blackburn MR (2013) Adenosine signaling during acute and chronic disease states. J Mol Med 91:173–181. doi:10.1007/s00109-013-0997-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Zhang W, Zhang Y, Wang W, Dai Y, Ning C, Luo R, Sun K, Glover L, Grenz A, Sun H, Tao L, Zhang W, Colgan SP, Blackburn MR, Eltzschig HK, Kellems RE, Xia Y (2013) Elevated ecto-5′-nucleotidase-mediated increased renal adenosine signaling via A2B adenosine receptor contributes to chronic hypertension. Circ Res 112:1466–1478. doi:10.1161/CIRCRESAHA.111.300166

    Article  CAS  PubMed  Google Scholar 

  19. Sun C-X, Zhong H, Mohsenin A, Morschl E, Chunn JL, Molina JG, Belardinelli L, Zeng D, Blackburn MR (2006) Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury. J Clin Invest 116:2173–2182. doi:10.1172/JCI27303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Peng Z, Borea PA, Varani K, Wilder T, Yee H, Chiriboga L, Blackburn MR, Azzena G, Resta G, Cronstein BN (2009) Adenosine signaling contributes to ethanol-induced fatty liver in mice. J Clin Invest 119:582–594. doi:10.1172/JCI37409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Dai Y, Zhang W, Wen J, Zhang Y, Kellems RE, Xia Y (2011) A2B adenosine receptor-mediated induction of IL-6 promotes CKD. J Am Soc Nephrol 22:890–901. doi:10.1681/ASN.2010080890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wen J, Jiang X, Dai Y, Zhang Y, Tang Y, Sun H, Mi T, Phatarpekar PV, Kellems RE, Blackburn MR, Xia Y (2010) Increased adenosine contributes to penile fibrosis, a dangerous feature of priapism, via A2B adenosine receptor signaling. FASEB J 24:740–749. doi:10.1096/fj.09-144147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433. doi:10.1126/science.1172447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Geurts AM, Cost GJ, Rémy S, Cui X, Tesson L, Usal C, Ménoret S, Jacob HJ, Anegon I, Buelow R (2010) Generation of gene-specific mutated rats using zinc-finger nucleases. Methods Mol Biol 597:211–225. doi:10.1007/978-1-60327-389-3_15

    Article  CAS  PubMed  Google Scholar 

  25. Rapp JP, Dene H (1985) Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension 7:340–349. doi:10.1161/01.HYP.7.3_Pt_1.340

    CAS  PubMed  Google Scholar 

  26. Takashima A (1998) Establishment of fibroblast cultures. Curr Protoc Cell Biol Chapter 2: Unit 2.1.1–2.2.12. doi:10.1002/0471143030.cb0201s00

  27. Feng M-G, Navar LG (2010) Afferent arteriolar vasodilator effect of adenosine predominantly involves adenosine A2B receptor activation. Am J Physiol Ren Physiol 299:F310–F315. doi:10.1152/ajprenal.00149.2010

    Article  CAS  Google Scholar 

  28. Rubino A, Ralevic V, Burnstock G (1995) Contribution of P1-(A2b subtype) and P2-purinoceptors to the control of vascular tone in the rat isolated mesenteric arterial bed. Br J Pharmacol 115(4):648–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sanjani MS, Teng B, Krahn T, Tilley S, Ledent C, Mustafa SJ (2011) Contributions of A2A and A2B adenosine receptors in coronary flow responses in relation to the KATP channel using A2B and A2A/2B double-knockout mice. Am J Physiol Heart Circ Physiol 301(6):H2322–H2333. doi:10.1152/ajpheart.00052.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Vitzthum H, Weiss B, Bachleitner W, Krämer BK, Kurtz A (2004) Gene expression of adenosine receptors along the nephron. Kidney Int 65:1180–1190. doi:10.1111/j.1523-1755.2004.00490.x

    Article  CAS  PubMed  Google Scholar 

  31. Rajagopal M, Pao AC (2010) Adenosine activates A2B receptors and enhances chloride secretion in kidney inner medullary collecting duct cells. Hypertension 27:1123–1128. doi:10.1055/s-0029-1237430, Imprinting

    Article  Google Scholar 

  32. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME (2015) Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res 116:991–1006. doi:10.1161/CIRCRESAHA.116.305697

    Article  CAS  PubMed  Google Scholar 

  33. McMaster WG, Kirabo A, Madhur MS, Harrison DG (2015) Inflammation, immunity, and hypertensive end-organ damage. Circ Res 116(6):1022–1033. doi:10.1161/CIRCRESAHA.116.303697

    Article  CAS  PubMed  Google Scholar 

  34. Franco M, Bautista R, Pérez-Méndez O, González L, Pacheco U, Sánchez-Lozada LG, Santamaría J, Tapia E, Monreal R, Martínez F (2008) Renal interstitial adenosine is increased in angiotensin II-induced hypertensive rats. Am J Physiol Ren Physiol 294:F84–F92. doi:10.1152/ajprenal.00123.2007

    Article  CAS  Google Scholar 

  35. Maas JE, Figler RA, Auchampach JA (2009) Inhibition of the A2B adenosine receptor (AR) with ATL-801 reduced infarction-induced reactive fibrosis and cardiac dysfunction in mice. Circulation 120:S717–S718

    Article  Google Scholar 

  36. Maas JE, Koupenova M, Ravid K, Auchampach JA (2008) The A2B adenosine receptor contributes to post-infarction heart failure. Circulation 118:S956

    Google Scholar 

  37. Toldo S, Mezzaroma E, Tassell BV, Kannan H, Zhong H, Zeng D, Belardinelli L, Voelkel N, Abbate A (2012) Selective blockade of A2B adenosine receptor reduces cardiac remodeling following acute myocardial infarction in the mouse. J Am Coll Cardiol 59:E997. doi:10.1016/S0735-1097(12)60998-X

    Article  Google Scholar 

  38. Zhang H, Zhong H, Everett TH, Wilson E, Chang R, Zeng D, Belardinelli L, Olgin JE (2014) Blockade of A2B adenosine receptor reduces left ventricular dysfunction and ventricular arrhythmias 1 week after myocardial infarction in the rat model. Heart Rhythm 11:101–109. doi:10.1016/j.hrthm.2013.10.023

    Article  PubMed  Google Scholar 

  39. Csoka B, Koscsó B, Töro G, Kókai E, Virág L, Németh ZH, Pacher P, Bai P, Haskó G (2014) A2B adenosine receptors prevent insulin resistance by inhibiting adipose tissue inflammation via maintaining alternative macrophage activation. Diabetes 63:850–866. doi:10.2337/db13-0573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Johnston-Cox H, Eisenstein AS, Koupenova M, Carroll S, Ravid K (2014) The macrophage A2B adenosine receptor regulates tissue insulin sensitivity. PLoS One 9:e98775. doi:10.1371/journal.pone.0098775

    Article  PubMed Central  PubMed  Google Scholar 

  41. Johnston-Cox H, Koupenova M, Yang D, Corkey B, Gokce N, Farb MG, LeBrasseur N, Ravid K (2012) The A2b adenosine receptor modulates glucose homeostasis and obesity. PLoS One 7:e40584. doi:10.1371/journal.pone.0040584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ra F, Wang G, Srinivasan S, Jung DY, Zhang Z, Pankow JS, Ravid K, Fredholm B, Hedrick CC, Rich SS, Kim JK, LaNoue KF, Linden J (2011) Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes 60:669–679. doi:10.2337/db10-1070

    Article  Google Scholar 

  43. Ogihara T, Asano T, Ando K, Sakoda H, Anai M, Shojima N, Ono H, Onishi Y, Fujishiro M, Abe M, Fukushima Y, Kikuchi M, Fujita T (2002) High-salt diet enhances insulin signaling and induces insulin resistance in Dahl salt-sensitive rats. Hypertension 40:83–89. doi:10.1161/01.HYP.0000022880.45113.C9

    Article  CAS  PubMed  Google Scholar 

  44. Shehata MF (2008) Important genetic checkpoints for insulin resistance in salt-sensitive (S) Dahl rats. Cardiovasc Diabetol 7:19. doi:10.1186/1475-2840-7-19

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Institutes of Health (HL077707, HL111392, and RC2 HL101681).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Auchampach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, S., Khan, M.A.H., Wan, T.C. et al. Characterization of Dahl salt-sensitive rats with genetic disruption of the A2B adenosine receptor gene: implications for A2B adenosine receptor signaling during hypertension. Purinergic Signalling 11, 519–531 (2015). https://doi.org/10.1007/s11302-015-9470-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9470-7

Keywords

Navigation