Skip to main content
Log in

A laser desorption ionisation mass spectrometry approach for high throughput metabolomics

  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The importance of metabolomic data in functional genomic investigations is increasingly becoming evident, as is its utility in novel biomarker discovery. We demonstrate a simple approach to the screening of metabolic information that we believe will be valuable in generating metabolomic data. Laser desorption ionisation mass spectrometry on porous silicon was effective in detecting 22 of 30 metabolites in a mixture in the negative-ion mode and 19 of 30 metabolites in the positive-ion mode, without the employment of any prior analyte separation steps. Overall, 26 of the 30 metabolites could be covered between the positive and negative-ion modes. Although the response for the metabolites at a given concentration differed, it was possible to generate direct quantitative information for a given analyte in the mixture. This technique was subsequently used to generate metabolic footprints from cell-free supernatants and, when combined with chemometric analysis, enabled us to discriminate haploid yeast single-gene deletants (mutants). In particular, the metabolic footprint of a deletion mutant in a gene encoding a transcriptional activator (Gln3p) showed increased levels of peaks, including one corresponding to glutamate, compared to the other mutants and the wild-type strain tested, enabling its discrimination based on metabolic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Allen J., Davey H.M., Broadhurst D., Heald J.K., Rowland J.J., Oliver S.G. and Kell D.B. (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21:692–6

    Article  CAS  PubMed  Google Scholar 

  • Allen J., Davey H.M., Broadhurst D., Rowland J.J., Oliver S.G. and Kell D.B. (2004) Discrimination of modes of action of antifungal. substances by use of metabolic footprinting. Appl Environ Microbiol 70: 6157–65

    Article  CAS  PubMed  Google Scholar 

  • Bader G.D., Heilbut A., Andrews B., Tyers M., Hughes T. and Boone C. (2003) Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends Cell Biol 13: 344–56

    Article  CAS  PubMed  Google Scholar 

  • Beck, T. and Hall M.N. (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402: 689–92

    Article  CAS  PubMed  Google Scholar 

  • Cardenas M.E., Cutler N.S., Lorenz M.C., Di Como C.J. and Heitman J. (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13: 3271–9

    Article  CAS  PubMed  Google Scholar 

  • Castrillo, J.I. and Oliver, S.G. (in press). Metabolomics and systems biology in Saccharomyces cerevisiae in K, E. (Ed), Fungal Genomics. Springer Verlag

  • Cooper T.G. (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26: 223–38

    Article  CAS  PubMed  Google Scholar 

  • Courchesne W.E. and Magasanik B. (1988) Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J Bacteriol 170: 708–13

    CAS  PubMed  Google Scholar 

  • Crespo J.L., Powers T., Fowler B. and Hall M.N. (2002) The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci U S A 99: 6784–9

    Article  CAS  PubMed  Google Scholar 

  • Daran-Lapujade P., Jansen M.L., Daran J.M., van Gulik W., de Winde J.H. and Pronk J.T. (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279: 9125–38

    Article  CAS  PubMed  Google Scholar 

  • Daugherty J.R., Rai R., el Berry H.M. and Cooper T.G. (1993) Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae. J Bacteriol 175: 64–73

    CAS  PubMed  Google Scholar 

  • Dunn W.B., Bailey N.J.C. and Johnson H.E. (2005) Measuring the metabolome: current analytical technologies. Analyst 130: 606–625

    Article  CAS  PubMed  Google Scholar 

  • Dunn W.B. and Ellis D.I. (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24: 285–294

    Article  CAS  Google Scholar 

  • Go E.P., Prenni J.E., Wei J., Jones A., Hall S.C., Witkowska, H.E., Shen Z. and Siuzdak G. (2003a) Desorption/ionization on silicon time-of-flight/time-of-flight mass spectrometry. Anal Chem 75: 2504–6

    Article  CAS  Google Scholar 

  • Go E.P., Shen Z., Harris K. and Siuzdak G. (2003b) Quantitative analysis with desorption/ionization on silicon mass spectrometry using electrospray deposition. Anal Chem 75: 5475–9

    Article  CAS  Google Scholar 

  • Goodacre R., Timmins E.M., Burton R., Kaderbhai N., Woodward A.M., Kell D.B. and Rooney P.J. (1998) Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144(Pt 5): 1157–70

    Article  CAS  PubMed  Google Scholar 

  • Goodacre R., Vaidyanathan S., Dunn W.B., Harrigan G.G. and Kell D.B. (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22: 245–52

    Article  CAS  PubMed  Google Scholar 

  • Ideker T., Thorsson V., Ranish J.A., Christmas R., Buhler J., Eng J.K., Bumgarner R., Goodlett D.R., Aebersold R. and Hood, L. (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929–934

    Article  CAS  PubMed  Google Scholar 

  • Jones D.L., Petty J., Hoyle D.C., Hayes A., Ragni E., Popolo, L., Oliver S.G. and Stateva L.I. (2003) Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway. Physiol Genomics 16: 107–18

    Article  CAS  PubMed  Google Scholar 

  • Kaderbhai N.N., Broadhurst D.I., Ellis D.I., Goodacre R. and Kell D.B. (2003) Functional genomics via metabolic footprinting: monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry. Comparative and Functional Genomics 4, 376–391

    Article  CAS  PubMed  Google Scholar 

  • Kell, D.B., Brown, M., Davey, H.M., Dunn, W.B., Spasic, I. and Oliver, S.G. (in press). Metabolic footprinting and systems biology: the medium is the message. Nat. Rev. Microbiol.

  • Kuruvilla F.G., Shamji A.F. and Schreiber S.L. (2001) Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors. Proc Natl Acad Sci U S A 98: 7283–8

    Article  CAS  PubMed  Google Scholar 

  • Magasanik B. and Kaiser C.A. (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290: 1–18

    Article  CAS  PubMed  Google Scholar 

  • Marini A.M., Soussi-Boudekou S., Vissers S. and Andre B. (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17: 4282–93

    CAS  PubMed  Google Scholar 

  • Minarikova L., Kuthan M., Ricicova M., Forstova J. and Palkova Z. (2001) Differentiated gene expression in cells within yeast colonies. Exp Cell Res 271: 296–304

    Article  CAS  PubMed  Google Scholar 

  • Mitchell A.P. and Magasanik B. (1984) Regulation of glutamine-repressible gene products by the GLN3 function in Saccharomyces cerevisiae. Mol Cell Biol 4: 2758–66

    CAS  PubMed  Google Scholar 

  • Oliver S.G., Winson M.K., Kell D.B. and Baganz F. (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol. 16: 373–378

    Article  CAS  PubMed  Google Scholar 

  • Raamsdonk L.M., Teusink B., Broadhurst D., Zhang N., Hayes, A., Walsh M.C., Berden J.A., Brindle K.M., Kell D.B., Rowland, J.J., Westerhoff H.V., van Dam K. and Oliver S.G. (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19: 45–50

    Article  CAS  PubMed  Google Scholar 

  • Shen Z., Thomas J.J., Averbuj C., Broo K.M., Engelhard M., Crowell J.E., Finn M.G. and Siuzdak G. (2001) Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry. Anal Chem 73: 612–9

    Article  CAS  PubMed  Google Scholar 

  • Soupene E., Ramirez R.M. and Kustu S. (2001) Evidence that fungal MEP proteins mediate diffusion of the uncharged species NH(3) across the cytoplasmic membrane. Mol Cell Biol 21: 5733–41

    Article  CAS  PubMed  Google Scholar 

  • ter Kuile B.H. and Westerhoff H.V. (2001) Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 500: 169–71

    Article  CAS  PubMed  Google Scholar 

  • Trauger S.A., Go E.P., Shen Z., Apon J.V., Compton B.J., Bouvier E.S., Finn M.G. and Siuzdak G. (2004) High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon. Anal Chem 76: 4484–4489

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan S. (2005) Profiling microbial metabolomes: what do we stand to gain?. Metabolomics 1: 17–28

    Article  CAS  Google Scholar 

  • Vaidyanathan S., Harrigan G.G. and Goodacre R. (eds), (2005) Metabolome Analyses: Strategies for Systems Biology. Springer, New York

    Google Scholar 

  • Vazquez A., Flammini A., Maritan A. and Vespignani A. (2003) Global protein function prediction from protein-protein interaction networks. Nat Biotechnol 21: 697–700

    Article  CAS  PubMed  Google Scholar 

  • Velasco I., Tenreiro S., Calderon I.L. and Andre B. (2004) Saccharomyces cerevisiae Aqr1 is an internal-membrane transporter involved in excretion of amino acids. Eukaryot Cell 3: 1492–503

    Article  CAS  PubMed  Google Scholar 

  • Wei J., Buriak J.M. and Siuzdak G. (1999) Desorption-ionization mass spectrometry on porous silicon. Nature 399: 243–6

    Article  CAS  PubMed  Google Scholar 

  • Wu J., Zhang N., Hayes A., Panoutsopoulou K. and Oliver S.G. (2004) Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation. Proc Natl Acad Sci U S A 101: 3148–53

    Article  CAS  PubMed  Google Scholar 

  • Zhu X., Garrett J., Schreve J. and Michaeli T. (1996) GNP1, the high-affinity glutamine permease of S. cerevisiae. Curr Genet 30: 107–14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowldgements

This work was supported by grants from the BBSRC to RG, DBK and SGO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Royston Goodacre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaidyanathan, S., Jones, D., Broadhurst, D.I. et al. A laser desorption ionisation mass spectrometry approach for high throughput metabolomics. Metabolomics 1, 243–250 (2005). https://doi.org/10.1007/s11306-005-0007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-005-0007-x

Keywords

Navigation